Transportation Sustainability Analysis: Alternative Fuel Vehicles

Panos D. Prevedouros, PhD
Professor of Transportation
Chairman, CEE Department
pdp@hawaii.edu

Outline

- i. Crisis
- ii. Sustainability
- iii. Framework
- iv. Analysis
- v. Results
- vi. Conclusion

In 1972, a team of experts from MIT presented a ground-breaking report called *The Limits to Growth*

In 2012
Australian
physicist G.
Turner
updated it
with data
from 1970
to 2000

Shortages of Critical Resources

Rocky Mountain Institute © 2011. Published by Chelsea Green in Reinventing Fire. For more information see www.RMLorg/ReinventingFire.

ASCE Ecological Footprint

ASCE Shifts in Global Urbanization

United Nations Department of Economic and Social Affairs World Urbanization Prospects - The 2014 Revision

Autonomous Vehicles, ride sharing services, the Internet of things, Al

- i. Crisis
- ii. Sustainability
- iii. Framework
- iv. Analysis
- v. Results
- vi. Conclusion

Sustainability

- Sustainability can be applied to any system, to describe the maintenance of a balance within the system
- Integrates Environment, Economy, Energy, Society
- World Commission on Environment and Development (WCED): Sustainability is a rate of development that meets the needs of the present without compromising the ability of future generations to meet their own needs

Sustainability ... How?

Transportation impacts on:

- Environment
- Society
- Economy

Incorporation of sustainability into transportation planning

- 1. Transportation system sustainability definition
- 2. Standard method for assessing transportation systems

Bits and Pieces Are Available

What Types of Infrastructure Does Envision Rate?

ENERGY

Geothermal

Hydroelectric

Nuclear

Coal

Natural Gas

Oil/Refinery

Wind

Solar

Biomass

WATER

Potable water distribution

Capture/Storage

Water Reuse

Storm Water

Management

Flood Control

WASTE

Solid waste

Recycling

Hazardous

Waste

Collection & Transfer

TRANSPORT

Airports

Roads

Highways

Bikes

Pedestrians

Railways

Public Transit

Ports

Waterways

LANDSCAPE

Public Realm

Parks

Ecosystem

Services

Natural Infrastructure

INFORMATION

Telecom

Internet

Phones

Satellites

Data Centers

Sensors

60 Credits in 5 Categories

QUALITY OF LIFE

Purpose, Community, Wellbeing

LEADERSHIP

Collaboration, Management, Planning

RESOURCE ALLOCATION

Materials, Energy, Water

NATURAL WORLD

Siting, Land and Water, Biodiversity

CLIMATE AND RISK

Emission, Resilience

Award Levels

Minimum Percentage of Points Achieved:

20%

30%

40%

50%

Sustainability and LCA

Life Cycle Models Cradle to Well to Grave Pump Fuel Cycle Vehicle Cycle

- i. Crisis
- ii. Sustainability
- iii. Framework
- iv. Analysis
- v. Results
- vi. Conclusion

The Sustainability Framework (1/3)

Goals and dimensions of a transportation system

The 7 goals seek to:

- 1. Minimize environmental impact
- 2. Maximize technology performance to help people meet their needs
- 3. Minimize energy consumption
- 4. Maximize and support a vibrant economy
- 5. Maximize users' satisfaction
- **6.** Comply with legal framework
- 7. Comply with local restrictions

The 7 dimensions:

- 1. Environment
- 2. Technology
- 3. Energy
- 4. Economy
- 5. Users (and other stakeholders)
- 6. Legal framework
- 7. Local restrictions

The Sustainability Framework (2/3)

Sample Applications

- Transportation systems
- Transportation modes

Other applications

- Hydroelectric, coal, nuclear plants
- Wind, solar power generation
- Construction
- Waste treatment
- Other infrastructure

Focus → Urban transportation modes

The Sustainability Framework (3/3)

Adjusted to assess sustainability in transportation

Urban transportation mode

- System operator
- Traveler
- Components
- Attributes

Different technologies and fuel types

Components

Construction

Fuel

Operation

JC Maintenance

Sustainability Indicators (1/2)

From literature developed indicators for sustainable transportation assessment grouped under 4 sustainability dimensions:

- 1. Transportation system performance
- 2. Environment
- Society
- 4. Economy

These sustainability dimensions are captured by the sustainable transportation goals described in the two fundamental definitions on sustainable transportation provided by the WCED (1987) and the (ECMT 2001)

- i. Crisis
- ii. Sustainability
- iii. Framework
- iv. Analysis
- v. Results
- vi. Conclusion

Assumptions

- All vehicles use the same infrastructure
- Indicators focus on the component vehicle, and 5 sustainability dimensions:
- 1. Environment
- Technology
- 3. Energy
- 4. Economy
- 5. Users

The remaining two dimensions (legal framework and local restrictions) are imposed by communities and they are applicable only to the deployment of specific transportation projects

Transportation Vehicles

- Internal Combustion Engine Vehicle or ICEV (2010 Toyota Camry LE)
- 2. Hybrid Electric Vehicle or **HEV** (2010 Toyota Prius III)
- 3. Fuel Cell Vehicle or FCV (2009 Honda Clarity FCX)
- 4. Electric Vehicle or **EV** (2011 Nissan Leaf)
- 5. Plug-In Hybrid Vehicle or **PHEV** (2011 Chevrolet Volt)
- 6. Gasoline Pickup Truck or **GPT** (2010 Ford F-150 base)
- 7. Gasoline Sports Utility Vehicle or GSUV (2010 Ford Explorer Base)
- 8. Diesel Bus or DB (New Flyer 40' Restyled)
- 9. Bus Rapid Transit or BRT (New Flyer 60' Advanced Style BRT)
- 10. Car-sharing or CS program with ICEV (2010 Toyota Camry LE)
- 11. Car-sharing or CS program with HEV (2010 Toyota Prius III)

Light Duty EVs Sold

Year	US Sales	% of World								
2010+2011	17,425									
2012	52,607									
2013	97,507									
2014	122,438	38%								
2015	116,099	21%								
2016	158,614	20%								
2017	199,826	22%								

2017 Comparable US Market Toyota Cars

Туре	ICEV	HEV	PHEV	FCV	
Model	Corolla LE	Prius II	Prius Prime	Mirai	
MSRP	\$19,000	\$25,000	\$28,000	\$57,500	
Tax Credit	n.a.	n.a.	\$7,500	\$7,500	
MPG/MPGe	32	54	54	67	
Range (miles)	~410	~600	~640	~310	
0-60 mph in sec.	9.8	10.5	10.9	9.0	
Fuel stations	167,000	167,000	15,500	35 (all in CA)	

Sample of US Market Alternative Fuel Vehicles

Year	Brand	Model	Туре	Approx. Price in US \$	Curb Weight (lb)	Battery Type	Battery KWh	City mpg/ MPGe	Electric- only Range (miles)	0-60 mph (sec.)
2017	BMW	i3	EV	\$44,450	2635	Li-ion	33	na/137	97	6.5
2017	Chevrolet	Bolt	EV	\$37,495	3580	Li-ion	60	na/128	238	6.3
2010	Chevrolet	Volt	EV	\$34,095	3543	Li-ion	18.4	42/106	420	8.8
2017	Ford	Focus	EV	\$29,120	3640	Li-ion	33.5	na/118	100	9.9
2014	Honda	FIT EV	EV	\$36,625	3252	Li-ion	20	na/132	82	8.6
2017	Mitsubishi	i-MiEV	EV	\$24,400	2552	Li-ion	16	na/121	66	13
2016	Nissan	LEAF S	EV	\$30,680	3307	Li-ion	24	na/99	84	10.4
2016	Nissan	LEAF SV	EV	\$34,200	3391	Li-ion	30	na/124	107	10.2
2012	Tesla	Model S	EV	\$69,500	4150	Li-ion	40	na/88	160	5.6
2017	Tesla	Model S	EV	\$74,500	4647	Li-ion	75	na/97	265	5.1
2016	Tesla	Model X 90D	EV	\$95,500	5271	Li-ion	90	na/90	250	4.8
2017	Honda	Clarity	FCV	Lease	4148	Li-ion	1.7	69/69	366	8.1
2017	Toyota	Mirai	FCV	\$57,500	4078	NiMH	1.6	67/67	300	9
2016	Chevrolet	Malibu	HEV	\$28,750	3388	Li-ion	1.5	49/na	na	7.4
2017	Ford	C-MAX SE	HEV	\$24,175	3640	Li-ion	7.6	42/na	na	8.1
2017	Ford	Fusion S	HEV	\$25,295	3668	Li-ion	1.4	43/na	na	9.1
2017	Honda	Accord	HEV	\$29,605	3483	Li-ion	1.3	49/na	na	6.9
2016	Honda	CR-Z	HEV	\$20,295	2650	Li-ion	0.6	36/na	na	9.3
2017	Toyota	Avalon	HEV	\$37,300	3461	NiMH	1.6	40/na	na	7.4
2017	Toyota	Camry	HEV	\$27,625	3240	NiMH	1.6	42/na	na	7.2
2017	Toyota	Highlander	HEV	\$37,230	4134	NiMH	1.9	29/na	na	7.0
2017	Toyota	Prius II	HEV	\$24,685	3075	NiMH	1.2	54/na	na	10.2
2017	Toyota	Prius c	HEV	\$20,150	2530	NiMH	0.9	48/na	na	10.9
2017	Toyota	Prius v	HEV	\$26,675	3340	NiMH	1.3	43/na	na	10.3
2017	BMW	i8	PHEV	\$143,400	3394	Li-ion	7.1	28/76	15	4.2
2017	BMW	330e	PHEV	\$44,100	3900	Li-ion	7	30/71	14	5.9
2017	Toyota	Prius Prime	PHEV	\$27,965	3365	Li-ion	9	54/133	25	10.9

Vehicle Characteristics

		ICEV	HEV	FCV	EV	PHEV	GPT	GSUV	DB	BRT	cs	cs
		Camry	Prius	Clarity	Leaf	Volt	F-150	Explorer	New flyer	New flyer	Camry	Prius
Weight	Lbs	3,307	3,042	3,582	3,500	3,781	5,319	4,509	26,000	49,000	3,307	3,042
Average occupancy	passengers	1.15	1.15	1.15	1.15	1.15	1.10	1.40	10.50	23.90	4.58	4.58
Average lifetime	years	10.6	10.6	15.0	15.0	15.0	9.6	9.6	12.0	12.0	2.0	2.0
Average annual miles	miles	11,300	11,300	11,300	11,300	11,300	11,300	11,300	41,667	41,667	18,000	18,000
Lifetime miles	miles	119,780	119,780	169,500	169,500	169,500	108,480	108,480	500,000	500,000	36,000	36,000
Cost to buy (MSRP)	\$ US dollars	\$22,225	\$23,050	\$48,850	\$32,780	\$40,000	\$22,060	\$28,190	\$319,709	\$550,000	\$22,225	\$23,050
Fuel Price	\$ per U.S.	\$2.85	\$2.85	\$4.90*	\$0.16**	\$2.85	\$2.85	\$2.85	\$2.94	\$2.94	\$2.85	\$2.85
(Jan. 2010 - W.Coast)	gallon	,	,	,		,	•	, 22	,		,	,

Note: (*) per kg, (**) per kWh

Life Cycle Models

Environment

Sustainability Dimension	Goal	Objective	Indicator
Environment	Minimize environmental impact	Minimize global warming Minimize air pollution	Carbon Dioxide - CO ₂ Methane - CH ₄ N ₂ O GHG Volatile Organic Compound Carbon Monoxide - CO Nitrogen Oxides - NO _x Particle Matter - PM ₁₀ Sulphur Oxides - SO _x
		Minimize noise	Noise
		Minimize externalities on living humans and species	Health

Technology

Sustainability Dimension	Goal	Objective	Indicator
		Maximiza vahiala lifatima	Vehicle lifetime
		Maximize vehicle lifetime	Upgrade potential
		Maximize used resources	Capacity
			Fuel frequency
Technology	Maximize technology performance to help people meet their needs	Minimize time losses	Maintenance frequency
Fechn		Minimize land consumption	Vehicle storage
_		Maximize supply	Supply
		Maximize mode choices for all users	Feasibility of use by social excluded groups
			Readiness
		Maximize vehicle performance	Engine power

Energy

Sustainability Dimension	Goal	Objective	Indicator
Energy	Minimize energy	Minimize energy consumption	Manufacturing energy Fueling energy
	consumption	Minimize energy consumption	Operation energy Maintenance energy

- i. Crisis
- ii. Sustainability
- iii. Framework
- iv. Analysis
- v. Results
- vi. Conclusion

Energy Consumpion per VMT

Energy Consumpion per PMT

Economy

Sustainability	Cool	Ohioativa	Indianton
Dimension	Goal	Objective	Indicator
		Reduce cost requirements	Property damage
γ́u	Maximize and support a vibrant economy	Minimize parking requirements	Parking cost
Economy		Minimize costs for the community	Safety cost
		Minimize governmental support	Subsidy
		Promote welfare	Job opportunities

Users

Sustainability Dimension	Goal	Objective	Indicator
Users	Maximize users satisfaction	Maximize transportation performance	Mobility Demand Global availability Reasonable availability Delay Reliability Safety
		Improve accessibility	Equity of access
			Leg room
		Maximize user comfort	Cargo space
			Seated probability
			Fueling opportunities

Urban Mode Sustainability Scores

										cs CS	cs fi
Sustainability Dimensions	ICEV	HEV	FCV	EV	PHEV	GPT	GSUV	DB	BRT	CS	CS
	Camry	Prius	Clarity	Leaf	Volt	F-150	Explorer	New flyer	New flyer	Camry	Prius
Environment	0.483	0.637	0.803	0.642	0.606	0.145	0.492	0.717	0.860	0.907	0.959
Technology	0.450	0.500	0.408	0.553	0.471	0.387	0.489	0.628	0.669	0.561	0.590
Energy	0.388	0.572	0.545	0.462	0.541	0.019	0.324	0.673	0.908	0.956	0.999
Economy	0.341	0.385	0.485	0.557	0.454	0.193	0.354	0.326	0.486	0.578	0.561
Users	0.344	0.347	0.291	0.129	0.354	0.429	0.402	0.250	0.228	0.344	0.347
Overall Sustainability Index	40.1%	48.8%	50.6%	46.8%	48.5%	23.4%	41.2%	51.9%	63.0%	66.9%	69.3%
Ranking	10	6	5	8	7	11	9	4	3	2	1

- i. Crisis
- ii. Sustainability
- iii. Framework
- iv. Analysis
- v. Results
- vi. Conclusion

Conclusion

(1/4)

- Transportation policies should promote a sustainable transportation system in the short and long term
- A dynamic sustainability framework must include the latest data of a transportation system...
 - fuel types, stations and costs, insurance rates, fees and taxes,
 vehicle weight, fuel efficiency, vehicle mileage, battery capacity
- Be sensitive to local policies ...
 - fuel costs, parking cost, road pricing charges, etc. are necessary to support transportation policy and planning

Conclusion

(2/4)

- In the short term, there are no barriers to increasing the penetration of HEV
- HEV has the second best sustainability performance
- In the long term electric drive and fuel cell vehicles have the potential to reduce environmental impact
- Car ownership per household in first word countries will decrease ...
 - due to aging and lower birth rates, the fading of the baby boomer effect in the U.S., restrictions of certain types of automobiles (for pollution or congestion reasons) and transportation-as-a-service (TaaS) with driver operated (e.g., DiDi, Lyft, Uber) and autonomous taxis

- EV and HEV are becoming more capable and are particularly suitable for polluted environments
- EV and HEV have the potential to become the dominant type of light duty passenger service vehicle in large urban areas
- This depends primarily on their purchase price, and regulations favoring them

Conclusion

(4/4)

 As long as gasoline-powered vehicles offer strong performance, rich technological content and good safety for \$25,000 or less (~2017 U.S. \$), EVs with the same

E-bus batteries will account for the bulk of second-life capacity through 2025 Electric cars E-buses Energy storage systems 24 GWh 18 12 2018 2019 2020 2021 2022 2023 2024 2025 Source: Circular Energy Storage

Thank You!

Panos D. Prevedouros, PhD
Professor of Transportation
Department of Civil Engineering
pdp@hawaii.edu