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Executive Summary  

Faced with the challenge of providing adequate transport services with limited resources, cities have, for 

several decades, been investing in Intelligent Transportation Systems (ITS). ITS utilize Information and 

Communications Technology (ICT) to make more efficient use of existing transport infrastructure with the 

aim of improving transport services and reducing congestion, accidents, and air pollution. In the past two 

decades, with the rapid advancement of ICT and intensive advocacy from big technology vendors, the 

concept of “smart cities” has gained great popularity and many cities have started to undertake a more 

holistic approach to improving urban services using technology in the name of smart city initiatives. 

ITS investments are beginning to take place in the context of smart city initiatives in many cities around 

the world. Moreover, energy efficiency and emissions reduction are becoming essential rationales for smart 

city investments. It is important, therefore, to understand under what conditions investments in ITS in the 

context of smart cities produce energy savings.  

In our study, we first reviewed relevant bodies of literature, including on smart cities, ITS, the linkages 

to benefits, especially energy savings, and the institutional and technological conditions that underlie these 

outcomes. Second, we conducted short case studies of smart mobility initiatives in Amsterdam, Barcelona, 

London, Madrid, New York City, San Francisco, Seoul, Singapore, Tokyo, and Vienna to determine the 

process, outcome, success factors, and lessons learned in deploying and operating these initiatives. And 

third, we conducted semi-structured and unstructured interviews with players in the smart cities field, 

including government officials, product and service providers, and local and global NGOs, as well as startup 

entrepreneurs. We sought their views on the conditions under which smart mobility products yield the best 

benefits. 

We found that the smart cities context has transformed traditional ITS into “smart mobility” with three 

major characteristics: people-centric, data-driven, and powered by bottom-up innovation. These themes 

serve as the analytical framework for understanding how smart mobility investments lead to energy savings, 

and are discussed in detail in Section 2. 

The comparison in the search for similarities among the case studies and interviews helped us develop a 

conceptual model—emphasizing cause and effect—of how ITS deployment and operation in the context of 

smart cities leads to energy savings. We argue that there are four main steps for ITS interventions in the 

smart cities context to achieve energy savings and that several institutional, technical, and physical 

conditions are required at each step. These four steps are: (1) a mobility problem is identified and a smart 

mobility solution is designed; (2) the solution is deployed and operated; (3) users use the solution and 

change their behavior accordingly; and (4) the smart mobility solution is scaled up and evolves over time. 

This conceptual model is presented in Section 3 with detailed discussions on institutional, technological, 

and physical conditions at each step in the model. 

Section 4 focuses on energy savings with quantitative evidence of energy saving potential of ITS 

investments collected from literature and case studies. Energy savings are achieved when users change their 

behavior and adopt smart mobility solutions: less travel, modal shift, and reduction of per-km energy 
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consumption in the short term. Also, smart mobility solutions as an enabler could lead to other energy saving 

policies or initiatives, which would otherwise not be feasible. In the long term, the user’s lifestyle could 

change, such as changes in vehicle ownership, location of job or residence, and activity pattern, which can 

lead to further energy savings. 

Section 5 links the results of this study to the Wuhan Integrated Transport Development Project (WITDP) 

to be financed by the World Bank and explains how that knowledge has been incorporated into project 

design. Relevant institutional, technical, and physical conditions are checked at each step of the conceptual 

model for the specific case of Wuhan. To further explore the energy efficiency potential of Wuhan and to 

mainstream ITS and smart transport solutions as a source of achieving energy efficiency using results of 

this study, a TRACE analysis (a decision-support tool developed by ESMAP to help cities identify 

underperforming sectors in terms of energy efficiency and actions for energy efficiency intervention) was 

also completed as part of this research effort. This analysis focused on the passenger transport sector.  

Finally, policy recommendations on the major conditions under which ITS investments in the context of 

smart cities achieve energy savings are summarized in Section 6. For cities in developing countries with 

lower motorization, less-developed infrastructure, less financial resources, and less institutional and 

technical capacity, our recommendations to achieve benefits from smart mobility investments are:  

(1) Involve all public and private players in a collaborative and transparent setting. Financially-

constrained cities in developing countries can take advantage of the resources from the private sector and 

citizens thanks to aligned interests in improving user experience. Collaboration and transparency is 

necessary not only for these low-cost innovative smart transport solutions to be developed, but also for 

building trust among all players for these solutions to be used, maintained, and scaled up in the long run. 

(2)   Develop the technical capacity to procure and monitor information services. For the innovative and 

usually technically complex smart transport solutions, developing cities with weak technical capacity face 

the risk of technology lock-in and capture by a powerful stakeholder (e.g., big technology provider) for 

excessive profit. Therefore, it is crucial for cities to develop minimum technical capacity to mitigate this 

risk when procuring and monitoring these services.  

(3)   Focus on basic infrastructure, including a coherent road network and basic traffic management 

measures. With less-developed existing infrastructure, developing cities have the opportunity to establish a 

coherent road network corresponding to land use and with basic traffic-management measures such as traffic 

lights, traffic signs, lane marking, zebra markings, and user education. Such a coherent road network is not 

only essential for meeting basic travel demand of the citizens (to avoid the paradox of high congestion at 

low-motorization level), but also strategically important to meet accessibility needs as the infrastructure and 

complementary policies guide future growth, thereby shaping future travel demand patterns. 
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1. Introduction: ITS, smart cities, and energy savings 

Faced with the challenge of providing adequate transport services with limited resources, cities have, for 

several decades, been investing in Intelligent Transportation Systems (ITS). ITS utilize Information and 

Communications Technology (ICT) to make more efficient use of existing transport infrastructure with the 

aim of improving transport services and reducing congestion, accidents, and air pollution. In the past two 

decades, with the rapid advancement of ICT and intensive advocacy from big technology vendors, the 

concept of “smart cities” has gained great popularity and many cities have started to undertake a more 

holistic approach to improving urban services using technology in the name of smart city initiatives.  

Smart cities have proven to be more than just a buzzword or short-term hype. It is estimated that the size 

of the global smart cities market will grow from USD411 billion in 2014 to USD1,135 billion by 2019 

[Markets and Markets (2015)]. Despite different focuses and definitions of the label “smart city” [see Albino 

et al. (2015) for a review], the core lies in the utilization of technology for the purpose of increasing the 

quality of life. Naturally, ITS become the essential application of “smart city” in the transportation sector 

as the “smart mobility” (or “smart transport”) component [Lombardi et al. (2011)]. ITS investments are 

beginning to take place in the context of smart city initiatives in many cities around the world. Moreover, 

energy efficiency and emissions reduction are becoming essential rationales for smart city investments. 

Indeed, energy saving (and/or greenhouse gas emissions reduction) is regarded as one major benefit and 

usually calculated in the cost benefit analysis [Newman-Askins et al. (2003) and Bertini et al. (2005)] to 

justify ITS investments.   

Indeed, the transport sector is responsible for about one-fifth of total energy use worldwide [World 

Economic Forum (2011)], with the largest share in passenger road transport [World Energy Council (2011)]. 

However, transport in general and urban transport in particular are sectors in which it has proven difficult 

to cost-effectively reduce energy. Urban transport demand management, most of which is enabled by ITS, 

is regarded as a major solution to mitigate climate change [Creutzig et al. (2015)].  With environmental 

sustainability, i.e. energy reduction and climate change mitigation, becoming a more important rationale for 

ITS investments in the smart cities context, it is crucial to understand under what institutional and 

technological conditions the energy savings benefit is realized.  

To answer the question of under what conditions ITS investments in the context of smart cities achieve 

energy savings we first reviewed relevant bodies of literature, including on smart cities, ITS, and the 

linkages to benefits, especially energy savings, and the institutional and technological conditions that 

underlie these outcomes. Second, we conducted short case studies of smart mobility initiatives in 

Amsterdam, Barcelona, London, Madrid, New York City, San Francisco, Seoul, Singapore, Tokyo, and 

Vienna to determine the process, outcome, success factors, and lessons learned in deploying and operating 

these initiatives. And third, we conducted semi-structured and unstructured interviews with players in the 

smart cities field, including government officials (including mayors, directors in relevant departments, 

technical staff etc.), product and service providers, and local and global NGOs, as well as startup 
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entrepreneurs. We sought their views on the conditions under which smart mobility products yield the best 

benefits.  

Case cities were selected according to two criteria: (a) cover major well-recognized “smart cities” around 

the world to capture the international best practices; and (b) existing city (not built from scratch) that is 

medium to large in size so that the findings could be more useful for client cities of the World Bank. Smart 

mobility initiatives in case cities were explored through presentations, document reviews, panel discussions, 

interviews, as well as site visits during the period from November 2014 to December 2015. Additional cases 

and interviewees were obtained through interviewee references, and conference and exhibition attendance. 

The research team went through several rounds of theory-building exercises to let major themes emerge and 

establish an analytical framework. Findings from the mini case analyses as well as interviews of key players 

were then organized and the results summarized based on the framework.  

We argue that three themes emerge that characterize the transformation of ITS in the context of smart 

cities—people-centric, data-driven, and powered by bottom-up innovation. Section 2 introduces these 

themes, which serve as the analytical framework to understand how smart mobility investments lead to 

energy savings. The comparison in the search for similarities among the case studies and interviews helped 

us develop a conceptual model—emphasizing cause and effect and presented in Section 3—of how ITS 

deployment and operation in the context of smart cities leads to energy saving benefits. This conceptual 

model is presented with detailed discussions of institutional, technological, and physical conditions at each 

step in the model. Section 4 focuses on energy savings with quantitative evidence of energy saving potential 

of ITS investments collected from literature and case studies. Section 5 links the results of this study to the 

Wuhan Integrated Transport Development Project and how the knowledge has been incorporated into 

project design. To further explore the energy efficiency potential of Wuhan and to mainstream ITS and 

smart transport solutions as a source of achieving energy efficiency using results of this study, a TRACE 

analysis was also completed as part of this research effort. This analysis focused on the passenger transport 

sector. Finally, policy recommendations on the major conditions under which ITS investments in the context 

of smart cities achieve energy savings are summarized in Section 6 with specific implications for cities in 

the developing countries.  

2. From ITS to smart mobility  

The evolution of the smart cities movement has transformed ITS into “smart mobility”—a series of 

transport initiatives that are integrated with broader city efforts aided by technology to improve livability, 

competitiveness, and sustainability. Smart mobility initiatives might be a new generation of traditional ITS 

investments. For example, a signaling system that could predict congestion and adjust traffic signal timings 

automatically versus fixed or pre-programmed settings of traditional signal control; real-time traffic 

information pushed to applications on users’ cell phones versus through variable message signs; demand-

responsive pricing schemes for road, public transit, parking versus electronic toll with fixed pricing, etc.; or 

there could be totally new areas or new services traditional ITS were unable to provide, such as multi-modal 

trip planning, real-time taxi-hailing and ride-sharing match,  personalized incentives to nudge travel 

behavior, etc. 
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These “smart mobility” initiatives have three major characteristics. They are all: people-centric, data-

driven, and powered by bottom-up innovations. 

2.1 People-centric 

Traditional ITS aim to improve system efficiency and focus on vehicles and vehicle flows. ITS in the 

smart cities age, on the other hand, aim to improve people’s travel experience and quality of life and 

therefore focus on users—people. A typical introduction to a “smart mobility” project would have a person 

(maybe with his/her cell phone) considering a wide range of mobility options as the lead role instead of cars 

driving in the streets and their never-ending need for improved traffic flows, as is the case for traditional 

ITS projects. Smart mobility aims to make users not just consumers of services, but also producers of such 

services—“prosumers”—who would “co-create” these mobility services with the government, operators, or 

other stakeholders. This people focus requires significant interaction with users to understand what people 

need and how they behave, and to provide users with personalized services. For example, in London, 30 

percent of the Oyster card holders are registered and Transport for London (TfL) is able to send personalized 

alerts to these users via phone message or e-mail regarding potential disruption or delays specifically for 

the lines that the targeted user normally takes. TfL is also able to refund the user his/her fare automatically 

if the train or bus runs too late (based on pre-set criteria, e.g., 15 minutes) or implement other individualized 

interventions based on the person’s trip pattern. 

The people-centric characteristic of smart mobility initiatives emphasizes the importance of problem 

identification and user evaluation—these solutions should respond to real people’s needs instead of 

showcasing technology. It also taps into the vast potential of public talent and user information, which could 

translate into valuable sources of data and potential revenue. The people-centric or user-centric 

characteristic also makes the alignment of interests possible for the public and private sectors—unlike the 

traditional ITS vendors who profit as long as the equipment and services are sold to the government, now 

making users happy becomes the new business model. All stakeholders have common interests to satisfy 

users’ needs as much as possible. People-centric brings tremendous challenges as well. People’s behaviors 

are complex, heterogeneous, and changing. Understanding and responding to user behavior is not easy. 

Fraud is also possible. More prominent is the privacy and security issue surrounding personalized 

information acquired and utilized by these smart mobility initiatives. Concerns over privacy and security 

might scare new users away or destroy the trust of existing users. 

2.2 Data-driven 

Traditional ITS have been collecting a large amount of data, but now data, especially big data, become 

the core business of smart cities. Besides the data traditional ITS collected through Closed Circuit Television 

(CCTV) cameras, sensors, and detectors installed on roads, gantries, and vehicles, smart mobility initiatives 

enjoy additional data sources such as real-time location of buses and taxis, location and records of mobile 

phones, smart cards, social networks, Internet view and click, shopping and credit cards, and various other 

user-generated information. These data are “big” because they are generated real-time with location 

information by a large amount of sources. For example, Transport for London’s (TfL) iBus program 
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produces 9,000 location data every second. These data are exponentially rich in information when integrated 

with other data sources and, therefore, have significantly more applications than the traditional ITS 

functions. Life in cities is being reshaped by better and faster flows of data [Saunders and Baeck (2015)]. 

Data start to become a new production factor, which drives productivity, innovation, and consumer surplus 

[Manyika et al. (2011)], although it can also be messy and manipulative [Greenfield (2013)].  

With data collection, integration, analysis, and visualization ability enabled by rapid advancements of 

technology and algorithm, the information services provided to users are changing in a revolutionary way. 

Smart mobility initiatives use huge real-time and personalized datasets for “nowcasting”1 what is happening 

at present and what is the best immediate action to take for individual users instead of “forecasting” how 

the system would work on an average peak hour using limited amount of data as traditional ITS did. The 

ability of “nowcasting” changes the infrastructure problem into an information problem [Mayer-

Schönberger and Cukier (2013)], as less infrastructure is needed if it can be utilized more efficiently through 

better information. For example, a predictive signal system increases effective capacity of intersections; 

real-time trip planning helps users avoid congestion on roads or on public transport, reducing the peak-hour 

pressure on the system. Matching demand with supply, such as customized buses or taxi-hailing, could also 

reduce the needs for investment in additional capacity. The ability to collect and analyze big data, and 

disseminate to the public becomes the core competence for smart mobility applications to solve these 

problems.  

2.3 Powered by bottom-up innovations 

Unlike traditional ITS, which are mostly confined within the transport sector, smart city is a holistic 

approach that influences different aspects of people’s lives. It is precisely because ITS in the smart cities 

context are people-centric and data-driven that involving other sectors is necessary and feasible. While 

smart mobility tries to solve transport issues that are interconnected with land-use planning, housing, 

environment, energy, health, public security, economic development, and information technology, 

successful top-down implementation calls for collaboration and integration across sectors, which is 

extremely challenging given the commonly siloed structure of city governments. 

On the other hand, the smart mobility market benefits from bottom-up innovations in the private sector. 

Unlike the traditional ITS market, which is dominated by large government procurement and therefore could 

suffer from both public sector inefficiency and proprietary technology lock-in, new ideas and applications 

of smart mobility initiatives are motivated and powered by citizens’ needs and private companies, more and 

more so by small startups. These innovations are fueled by data availability as the business model is based 

on the revenue-generating potential of the user base and data. Cities embrace these bottom-up innovations 

as they not only provide public services with lower costs to the city, but also bring high-quality jobs and 

vitality to the economy. One example is the collaboration between cities and the real-time crowdsourced 

navigation app Waze. Through the Connected Citizens Program, Waze users can get information from the 

                                            
1 “Nowcasting: Big Data Predicts the Present.” ITworld, October 22, 2012. Available at http://www.itworld.com/article/2719343/it-
management/nowcasting-big-data-predicts-the-present.html. 
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city regarding construction, marathons, floods or anything else that can cause delays on the road. In return, 

Waze shares its real-time user-generated traffic data with participating cities so that they can respond to 

incidents and manage traffic better. 

These bottom-up innovations bring jobs, low-cost public services, as well as competition, 

entrepreneurship, skill, and capacity to the labor market. However, they also bring disruption and regulatory 

challenges to the city. For example, Uber and other transportation network companies have shaken the 

traditional taxi industries in many cities and in some cases even caused conflicts. Cities are having a hard 

time finding the balance between encouraging innovation, and meeting citizens’ demands, while keeping 

necessary control over public safety and social equity. 

As is evident from the discussion above, people-centric, data-driven, and powered by bottom-up 

innovations are three characteristics that are intertwined and feed off each other. For example, open data 

and open-source initiatives are expanding the landscape of smart mobility taking advantage of all these three 

aspects: focus on user experience, people as consumers as well as producers of both data and applications 

(software and hardware), encouraging bottom-up innovations and nourishing community and 

entrepreneurship, leading to innovative initiatives such as the CitySDK initiative in Europe and the London 

Open Data Challenge Series. 

Posing both opportunities and challenges, people-centric, data-driven, and powered by bottom-up 

innovations are key to understanding the conditions for ITS investments in the smart cities context, i.e. 

successfully implementing smart mobility solutions and achieving energy saving benefits.  

3. How to successfully implement ITS investments in the smart cities 

context 

It is possible to say that “all cities want to be smart.” For instance, India has plans to transform 100 cities 

into smart cities [World Bank (2015)] and China already has more than 500 smart city pilots.2 Most of these 

initiatives have a smart transport component. However, implementing these smart mobility projects is not 

always successful—intended benefits are not achieved (and usually results are not even measured!). We 

will present the conceptual model in Section 3.1, and discuss in Section 3.2 what institutional, technical, 

and physical conditions are necessary to successfully implement ITS investments in the smart cities context 

at each step. 

3.1 A conceptual model 

We argue that there are four major steps for ITS interventions in the smart cities context to achieve energy 

savings (see Figure 1 which presents a stylized model):  

(1) A mobility problem is identified and a smart mobility solution is designed. Major problems associated 

with urban mobility—congestion, road accidents, and air pollution—all have energy implications. The key 

                                            
2 Xinhua net, 2015.  http://news.xinhuanet.com/fortune/2015-06/27/c_1115742453.htm. 
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here is that the smart mobility solution is designed to solve an existing problem that people are concerned 

about, and is not a solution “looking for a problem.” 

(2) The smart mobility solution is deployed and operated. The city needs to have the resources and 

capability to implement the solution and keep it running sustainably.  

(3) Users use the solution and change their behavior accordingly. That transport service users are willing 

and able to use the application and change their behavior is the most important step. Users might travel less 

frequently, switch to a less energy-intensive mode, change to a less-congested route, change their departure 

time, or drive less aggressively. These behavioral changes translate into lower energy consumption.  

(4) The smart mobility solution is scaled up and evolves over time. It is important for smart mobility 

solutions to be financially sustainable in the long run, taking advantage of the network externality and scale 

economy to maximize benefits. A healthy “ecosystem” of players also needs to be cultivated to enable 

learning and evolution in order to adapt to future changes.  

 

 

 

3.2 Institutional, technical, and physical conditions for successful smart mobility investments  

Smart mobility investments, or ITS investments in the smart cities context, are people-centric, data-

driven, and powered by bottom-up innovations, as suggested by the framework presented in Section 2. 

These characteristics bring challenges as well as opportunities to implementation at each step in the 

conceptual model. We will summarize what we have learned through research and past implementation 

experiences in different cities into three sets of conditions for each step: institutional conditions (including 

Figure 1 Conceptual model for ITS investments in the smart cities context to achieve energy savings 
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organizational, legal, and policy aspects), technical conditions (concerning technology and analytics), and 

physical conditions (infrastructure, equipment, and devices). 

(1) A mobility problem is identified and a smart mobility solution is designed 

As the use of ICT is the driving force of the smart cities movement and lies at the center of these initiatives, 

cities sometimes focus too much on investing in technology itself and neglect the real goal of improving the 

quality of people’s lives, resulting in the phenomenon of technology solutions “looking for a problem.” One 

criticism smart city initiatives commonly receive is their emphasis on the promotion of technology 

[Townsend (2013)]. However, as we discussed in Section 2.1, smart mobility should be people-centric. 

Investments made only for the sake of technology are seldom successful in achieving maximum benefits 

for the people because they are not set up to do so. Therefore, identifying a problem that people are 

concerned about is the key first step. Institutional conditions include a channel of public participation for 

problem identification and design, and a collaborative setting for all players. Seeking innovative ideas 

through urban living labs and community events such as hackathons and open-data challenges is highly 

beneficial at this step. See Figure 2 for a summary. 

 

Institutional conditions 

 

Establishing channels to let the public voice their concerns seems to be the best way to identify problems. 

The governments in our case studies are generally proactive about reaching out to citizens. While 

technology enables easier communication channels, such as apps and social networks, traditional channels 

Figure 2 Conditions for Step 1: Mobility problem identified and smart mobility solution designed  
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such as call centers, mail, or in person are still needed to include those who do not have Internet access. 

Many successful smart mobility initiatives are built along with e-government initiatives. For example, the 

Seoul Metropolitan Government implemented its Open Government 3.0 incorporating several channels for 

citizens to voice their concerns. Twenty-three percent of complaints are associated with transportation. The 

government has heard from citizens that low-income workers do not have access to public transport services 

late at night, taxis are expensive, and taxi drivers are sometimes reluctant to make the trip to a remote part 

of the city at night. Seoul implemented the Owl Bus initiative, utilizing cell phone call and message data 

made at night to determine demand and design a minimum level of bus service from midnight up to 5 a.m. 

This service was used by 629,752 passengers within the first 100 days [Sung et al. (2015)].  

When searching for a smart mobility solution, a common phenomenon is that the city government is 

bombarded by private companies trying to sell their products and solutions. Public-private collaboration is 

very difficult when the government is resistant to the “sales pitch” while private companies are kept in the 

dark, unaware of the big picture. A truly collaborative setting is needed where all players can sit together 

and find a holistic solution to complex mobility problems in the city. This collaborative setting could be 

NGOs or industry associations. One good example is ITS Japan (formerly known as Vehicle, Road and 

Traffic Intelligence Society), an NGO that consists of less than 30 representatives from vehicle, 

infrastructure, and communication industries; private business corporations; and academia working together 

with the four government ministries—Ministry of Land, Infrastructure, Transport and Tourism (MLIT); 

National Police Agency (NPA); Ministry of Internal Affairs and Communications (MIC); and Ministry of 

Economy, Trade and Industry (METI)—and other agencies related to ITS. As per our findings, ITS Japan 

is one place where different ministries are talking to each other about the same issues, and real collaboration 

between public, private, and academia is taking place on identifying urgent problems, setting priorities, and 

proposing holistic solutions. A similar idea is the U.S.-based Smart Cities Council, an industry coalition 

promoting smart city solutions that offer a platform with opportunities to collaborate provided in the form 

of knowledge exchange, for example, studies, forums, and trainings.  National and regional ITS societies 

play an important role across the lifecycle of smart mobility deployment. In our case studies, ITS societies 

in Asian cities show different characteristics from those in European cities. See Box 1 for more details. 

Box 1 National ITS societies and organizations 

National and regional ITS societies play a pivotal role not only in enabling collaboration between industry, the 

private sector, government, and academia but also in ensuring standardization of ITS equipment and 

communication protocols. As such, these tend to be rather centralized and top-down organizations.  Creativity and 

innovation, while not stifled, is not usually engendered in these societies; rather they fulfil their main function to 

develop creative ideas, which have been generated elsewhere.  

The case of ITS Japan illustrates this and showcases similar situations found in China, Singapore, and South 

Korea—as we found on our study tour of Asian cities. The case of ITS United Kingdom is a slightly different model 

to the Asian one above. This society has more of a focus on the innovative stage of ITS. As we found on our study 

tour of European cities, this is also typical of such societies in the Netherlands and Spain, for example. 

ITS Japan—A Typical Example of Asian ITS Societies 

Japan was an early adopter of institutional arrangements to develop ITS in 1999 through ITS Japan. The objectives 

were to promote ITS through collaboration between industry, the private sector, government, and academia, and to 
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standardize system architecture. Four central ministries report to the Japanese cabinet—the Ministry of Land, 

Infrastructure, Transport and Tourism (MLIT), the National Police Agency (NPA), the Ministry of Internal Affairs 

and Communication (MIC), and the Ministry of Economy, Trade and Industry (METI).   

Nine development areas were identified: (1) car navigation (MLIT); (2) electronic toll collection (MLIT); (3) safe-

driving assistance; (4) traffic control; (5) road management (MLIT); (6) public transport operation and 

management; (7) freight management; (8) pedestrian assistance; and (9) emergency vehicle management.  

This is a centralized and top-down collaboration and while it could be argued that this might have stifled creativity, 

it has no doubt played a key role in enabling Japan to be at the forefront of: (1) in-car navigation systems developed 

by private companies, but with national standard compatibility; (2) a national Vehicle Information and 

Communication System (VICS) installed in over 50 percent of the country’s 80 million cars; (3) roadside sensors 

called “ITS spots” that provide amongst other functions, dynamic route guidance, data collection, and advance 

warning of incidents; and (4) a nationwide ETC system, including smart route guidance and monitoring of freight 

vehicles. 

Finally, Japan’s ITS Info-Communications Forum focuses on standardizing ITS equipment and communications 

protocols. The MIC provides the framework to develop national technical standards; the Association of Radio 

Industries and Businesses (ARIB) evolves the standards through technical research; and the Forum prepares 

guidelines and disseminates these through ITS Japan and other organizations. 

Other Asian countries, including Singapore, South Korea, and China have followed a similar centralized and top-

down approach.  In Singapore, ITS is the responsibility of the Land Transport Authority (LTA). In South Korea, 

ITS Korea was founded in 1999. ITS China was a later adopter, founded in 2007 under the Ministry of Science and 

Technology. 

ITS United Kingdom – A Typical Example of European ITS Societies 

ITS UK is a not-for-profit public/private sector association providing a forum for all organizations concerned with 

ITS. It works to bring the benefits that ITS can offer in terms of economic efficiency, transport safety, and 

environmental benefits to the United Kingdom—and at the same time expand the ITS market. The membership is 

wide, comprising over 150 UK organizations, including government departments, local authorities, the private 

sector, and academia.    

Its focus on being a forum for ideas feeding the development of solutions and standards is different from societies 

in Asia that are directed more at the later stages of ITS development.  ITS UK enables cutting edge ITS seminars 

and documentation, demonstrating best practice, and commissioning research unlikely otherwise to be 

commissioned on issues relevant to ITS deployment. This is more akin to a kind of “creative data lab” or a 

“brainstorming roundtable” than the Asian case.   

For example, in recent years, ITS UK has focused on the development of autonomous vehicles, platooning, roadside 

sensors, narrowband communications, intelligent pedestrian crossings, and smart parking systems. However, this 

does not mean that the promotion, development, and standardization of ITS is neglected; rather, these functions are 

carried out by the Urban Traffic Management Control (UTMC) program by local authorities and the ITS industry.    

The UTMC program, initiated in the early 1990s by the Department for Transport (DfT), is more comparable to 

Asian ITS societies yet its focus is broader and more insightful. It aims to: (1) achieve an effective, competitive 

marketplace, and avoid supplier “lock in”; (2) sustain technical innovation; (3) ensure that different local authorities 

align their demands on systems suppliers where practical; (4) ensure systems can exchange data quickly, simply, 

and cheaply.  Its core is the UTMC Technical Specification based on simple values of: making use of mainstream 

technology as far as practical, especially Internet protocols; setting standards where useful (but only where useful 

as the focus is on interfaces, leaving functional innovation to the creativity of suppliers); achieving development 

by consensus and not creating a technical dictatorship; and being open and readily available (UTMC specifications 

are free to access and free of charge). 

Other European countries such as the Netherlands and Spain have followed this less centralized, more bottom-up 

approach in their ITS societies. 
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Technical conditions 
 

Innovation is the key technical aspect at this stage. Cities are realizing the power of the citizen community 

and collaborations. Some cities establish civic innovation labs or urban living labs; some utilize events such 

as open-data challenges, hackathons, and innovation competitions to gain ideas for smart mobility solutions. 

Examples include the London Open Data Challenge Series, the Smart City Gran Concepción in Chile3, 

Smart Transport & Energy Hackathon in Berlin4, and many more. The London Open Data Challenge Series 

supports teams to develop products or services using open data for social challenges—as these social 

challenges might not have a market that encourages the private sector to develop them naturally 

[Nesta/Open Data Institute (2015)]. Some cities also use the “open by design” approach where data, source 

codes for software, as well as technical specifications or designs for hardware are open and shared to boost 

innovation. 

Research has been done to show how hackathons facilitate public participation in providing innovative 

solutions to solve city problems [Zapico Lamela et al. (2013)]. 

(2) The ITS solution is deployed and operated  

This is the main implementation step for a smart mobility solution. The most-mentioned obstacles by our 

interviewees at this step include budget, data, and fragmented authority. To overcome these obstacles, a 

long-term vision and coalition of support for transport is needed. City government needs to have minimum 

institutional capacity to enable transparent and performance-based contract management and monitoring. 

An administrative authority with real power is also necessary for interagency coordination. Institutional 

(including legal) arrangements for data sharing and open data is also essential. Technical capacity is needed 

for data collection and integration, data analyses, and information service provision. If cities choose to use 

third-party providers, capacity is needed to procure and monitor these services. Physical conditions, 

including a coherent road network infrastructure as well as the availability of transport and ICT 

infrastructure and devices, are also important. See Figure 3 for a summary. 

                                            
3 http://innovatingcities.org/innovatingcities/chile/. 
4 http://www.startupbootcamp.org/blog/2014/june/smart-transportation-energy-hackathon-2014.html. 
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Institutional conditions 

 

Implementing smart mobility solutions is usually neither cheap nor easy. The city needs to have a long-

term vision and “coalition of support” [Ardila-Gómez (2004)] for transport. A long-term vision is usually 

represented by a long-term transportation plan for the city. One good example is the City of Helsinki’s 

Vision 2025 “Mobility on Demand” plan.5 The city plans to provide citizens with a smartphone app that 

functions as both a journey planner and universal payment platform, knitting together every possible 

transport mode in the city, including subways, buses, ferries, car sharing, bike sharing etc. into a single 

personalized mobility package that is also updated in real time. This ultimate smart mobility solution 

proposal reflects Helsinki’s ambition, and the city has had political momentum to implement smaller 

solutions along the line, for example, Kutsuplus, an on-demand mini bus service that users could specify 

from a smartphone app. A champion is also frequently mentioned in our interviews as a condition for smart 

mobility deployment—for example, the Mayor of London, Boris Johnson, for the innovative solutions 

implemented by Transport for London (TfL), and the Mayor of Rio de Janeiro, Eduardo Paes, for 

implementing the City Operations Center, which gathers and displays data from multiple urban services 

ranging from public transport to garbage collection, among others. 

Yet, even with a long-term vision, a coalition of support, and a champion in place, cities still need to 

have a minimum institutional capacity, including proper organizational structure, funding, and human 

                                            
5 https://www.hsl.fi/en/strategy. 

Figure 3 Conditions for Step 2: Deploy and operate the solution 
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resources, to be able to ensure that the implementation of smart mobility initiatives is on track to realize the 

good vision and benefit the citizens. This institutional capacity of city agencies enables transparent and 

results-driven (performance-based) contract management and monitoring without which a powerful 

stakeholder (e.g., big technology provider) can capture the city for excessive profit [Ardila-Gómez (2004)]. 

A smart mobility project involves multiple sectors and siloed government structure. Fragmented 

authority is among the major obstacles to deploying and operating such a project. An authority with real 

administrative power is needed to facilitate the cooperation and integration of different agencies in the city. 

For example, many cities (e.g., Amsterdam, Barcelona, and Seoul) have a Chief Technology Officer (CTO) 

or Chief Information Officer (CIO) reporting directly to the mayor. This official has an independent 

finance/budget and wields power over all city agencies. This official can take the lead role in implementing 

smart mobility solutions without bureaucratic impediments, and can also facilitate learning, communication, 

and collaboration between different agencies and make city-level policies across sectors. 

In order to integrate data from different sources, as required by most smart mobility solutions, there 

should be some institutional (including legal) arrangements for data sharing and open data. These 

arrangements include defining data ownership, the rights and liabilities of collecting, using, and sharing 

data depending on the type of data, including important aspects of privacy, security, and ethics. Some 

questions need to be answered to avoid potential conflicts of different parties. For example: Who can have 

access to the data and under what conditions? If data is wrong, who is liable? Who should benefit from the 

profits generated by data? What safety standard should apply corresponding to potential security risks? 

South Korea appears to be at the forefront of opening public data through legislation. Its Constitutional 

Court has ruled that access to information is a constitutional right. In 1996, it passed a freedom of 

information law; and in 2013, a new open-data law was enacted. This open-data law is the back bone for 

many smart city initiatives throughout the country. There are also examples of a step-by-step approach as 

sharing data is the first step of open data. For example, Amsterdam moves the open-data arrangement 

gradually by sharing data internally using the “Apps 4 civil servants” platform, external data sharing, and 

open data. For privately collected data, there is little experience and there is still debate on data ownership 

and rights. Usage is usually purchased, and information regarded as business secrets is difficult to obtain, 

such as car-sharing companies’ fleets or private parking companies’ real-time parking availability. 

 

Technical conditions 

 

The core technical condition at this step is all around data. Technical capacity is needed for data collection, 

data integration, data management, data analysis, and information service provision to implement the smart 

mobility solution.  

Some data are collected through sensors, cameras, and field operators’ survey devices. Devices have 

errors and city officials in Barcelona said it is quite expensive to purchase software to correct these errors. 

Some data are collected through crowdsourcing becoming the so-called User Generated Content (UGC) 

(e.g., Waze and Moovit). Technical capacity is needed to integrate different sources of data. For example, 

AutoNavi, a navigation software in China, uses real-time speed data collected by the company’s personnel 
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using GPS and other devices, event extraction from Sina Weibo (a Twitter-like social network in China) 

tweets, as well as the software users’ GPS locations.6 Therefore, using the standardized data format and 

protocol is essential to reduce data integration costs. Also, adopting a common platform (such as CitySDK 

in Europe) for application development saves costs and increases interoperability. 

Data collection and integration is now a flourishing market with thousands of startups, so-called data 

aggregators, providing these specialized services in the form of Application Programming Interfaces (APIs) 

through which software developers can write specific applications to use the data. Data analysis and 

information service provision also nurtures numerous startups specialized in developing and operating 

applications. If cities choose to open their data to take advantage of society’s productivity and innovation 

potential, technical capacity will be needed to maintain the open-data portal to manage the APIs with large 

volumes of calls. For example, New York City’s more than 1,300 open datasets are hosted by Socrata7, a 

private company that specializes in open-data portals and also hosts the World Bank’s open-data platform. 

Most likely, cities do not have the technical capacity to do data integration, analysis, and information 

service provision in-house. It is suggested that cities publish data instead of managing APIs [Boyd (2014)] 

or develop applications that should be left to the specialized data aggregators, software developers, and 

system integrators. Cities then need to procure these services from a third party, therefore capacity is needed 

to procure startups and manage performance-based contracts, which in the case of information service are 

Service Level Agreements (SLAs). For example, the City of Madrid adopted a performance-based approach 

to manage its urban services provision. Regarding the huge amount of data generated in the urban system, 

the city chooses only to receive data that are useful—that which is linked to service quality indicators—to 

reduce the burden of data management. As smart mobility solutions are often innovative and technically 

complex, cities may not know the options available, not to mention the specifications. Therefore, more 

flexible procurement methods need to be adopted. For example, Copenhagen used a procurement method 

called “Competitive Dialogue,” a two-stage procurement process that allows cities to discuss with providers 

individually and identify and define the solutions (“dialogue phase”) before tendering [Burnett (2009)]. This 

requires the cities to have the capacity to clarify the needs, communicate with the private companies, and 

analyze and compare different technical solutions.  

Box 2 below compares in detail different procurement options for ITS. 

Box 2 Procurement of ITS 

 

One of the main difficulties in preparing an ITS bid is when a technology supplier must act as the main contractor 

or belong to a joint venture, and where the ITS comprise a range of technologies such as ATC, CCTV, 

communications, etc. which are specialized and which may not be the specialty of the supplier. 

Thus it is sometimes considered useful to use a system integrator when a number of disparate elements need to be 

combined for the overall solution (e.g. data transmission, CCTV, Variable Message Signs (VMS), Automatic 

Number Plate Recognition (ANPR), bus priority, etc.)  These are companies that usually implement their own 

specialized ITS application (such as an ATC system), but they are also able to incorporate ancillary subsystems 

that can be selected from internationally leading manufacturers. The ideal situation is one where the software 

developer and system integrator are one and the same. A system integrator can hold all of the subcontractors 

                                            
6 http://www.kingofcoders.com/viewNews.php?type=news&id=56336&number=94445285. 
7 https://nycopendata.socrata.com/. 
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responsible and also help to resolve any issues upon installation. 

System integrators can ensure functional specifications in an ITS bid to provide greater flexibility for innovation 

from different suppliers to assure competitiveness.  However, functional specifications require clear evaluation 

criteria related to performance. They can also manage the Request for Information (RFI) from a potential supplier 

by providing bidders and suppliers a chance to better understand what is required. 

A disadvantage can be a lack of application knowledge on traffic engineering and operations.  Another 

disadvantage is the risk of conflict between the main ITS provider (say an ATC system or CCTV) and the system 

integrator regarding the sharing of responsibilities and technical risks. 

For example, the table below summarizes ITS procurement options from World Bank case studies in Beirut, Cebu, 

and Mumbai, amongst others. 

Bidding process Description Advantages Disadvantages 

Pre-qualification 

 

Single-stage process requiring firms 

to prove expertise and experience 

before bidding 

Assurance of 

reputable and capable 

bidders 

 

Need to fix consortia 

very early in the process 

Cost of time that could 

be used with technical 

and financial bid 

Two-stage 

 

In the first stage, bidders demonstrate 

their ability to meet functional 

requirements. 

 

In the second stage, the most 

qualified bidders present their 

financial bids. 

First technical filter 

allows concentration 

of evaluation efforts 

in financial and 

negotiation stages. 

Cost of time that could 

be used with technical 

and financial bid 

 

Single-stage 

The above two steps are combined 

into one stage. 

Shorter timescale 

with a two-envelope 

system, combined 

with a weighting 

system 

Need for detailed 

specifications 

Risk of no market 

compliance 

Risk of having to 

evaluate too many bids 

in detail 

IT variant of 

two-stage 

In the first stage, a consultant will 

determine a city’s ITS needs and 

draft functional specifications 

according to guidelines completed by 

the consultant. Firms are invited to 

demonstrate systems that adhere to 

functional specs. 

In the second stage, a specific 

specification is drafted. The bidders 

compete on equal footing for the 

same specification to find the least 

expensive way to provide the same 

service. 

Solution(s) more 

focused on client’s 

needs instead of 

suppliers’ equipment 

offers 

More aspects than 

only equipment/ 

systems requirements 

are taken into account 

from the beginning of 

the procurement 

process. 

Initial process takes 

longer; however, this 

time is recovered in the 

long run 
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Training and education activities in collaboration with the private sector should be encouraged to increase 

in-house capacity and skills for the city to undertake smart mobility projects.   

 

Physical conditions 

 

A coherent road network infrastructure (e.g., different types of functional road hierarchy) serves as the 

physical foundation for the ITS solutions to work. It would be costly to implement smart mobility solutions 

if the road network is dispersed, distant, and disconnected.  

Other physical conditions are quite straightforward. Specific smart mobility application requires specific 

physical infrastructure to be in place for data collection (e.g., sensors, cameras, GPS device) and 

communication (e.g., Wi-Fi in the bus, electronic boards). All these physical infrastructure and devices need 

proper maintenance. 

(3) Users use the solution and change their behavior accordingly 

This is the most essential step in the conceptual model as users’ behavioral changes result in energy 

savings. In our interviews, the challenge of changing user behavior is among the most mentioned obstacles 

to implementing smart mobility solutions. Korean Smart Card Co.’s T-money found the biggest challenge 

was getting users in Malaysia to adopt smart cards instead of using cash. In order for transport service users 

to be willing and able to use the smart mobility application, and then be willing and able to change their 

behavior—travel less, switch to less energy-intensive modes, change routes, change departure time, or drive 

with less stops—several conditions are needed. Institutionally, policy signals should be coherent leaning 

toward the “green” modes; transparency is necessary to build trust; and enforcement should be in place and 

consistent. Technically, demand should be understood correctly, anticipating behavioral factors; the public 

and private sector should be aligned to provide marketing and education; privacy, security, ethics, and fraud 

issues should also be considered. Physically, infrastructure and user interfaces should be properly designed 

considering the availability of user devices, and alternatives should be provided for users to change their 

behavior. See Figure 4 for a summary. 
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Institutional conditions 

 

Users’ behavior is influenced by multiple factors, including the transport services’ attributes. Cities can 

influence citizens’ travel choices with different policies. Therefore, policies need to be coherent, instead of 

contradictory, to direct users to favor less energy-intensive modes. For example, when a smart mobility 

initiative making public transport more convenient is implemented, users are more likely to use the solution 

and shift mode to public transport from cars if there are also policies restricting single-occupancy car use, 

such as parking restrictions or traffic-calming measures. If, however, other city policies encourage car use—

for example, reduction in fuel tax, free parking, and higher speed limit—smart mobility applications aimed 

at encouraging pedestrians or cycling would be unable to influence users as intended. 

Changing behavior is hard and users do not take risks if they don’t believe that they will benefit from the 

solution. Therefore, it is important for cities to encourage public participation throughout the design and 

implementation process. Cities need to be open and transparent, setting up channels to communicate with 

users on the intention, benefits, costs, timeline, and other attributes of the smart mobility solution. Being 

open and sharing information with users is especially important when there are bugs, mistakes, or incidents 

with the service provided, so that users do not lose trust. One example is in Rio de Janeiro during the protests 

that erupted in the summer of 2013 over the increase in public transport costs. Citizens were disappointed 

by the unavailability of real-time camera feeds of the city operation center and suspected cameras at protest 

locations were intentionally turned off. Officials at the operation center said it was a technical difficulty due 

Figure 4 Conditions for Step 3: Using the solution and changing behaviors 
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to high demand, but lack of transparency and communication could have led to public distrust.8 Enforcement 

should also be adequate and consistent, otherwise users lose trust.  

 

Technical conditions 

 

User behavior is localized. People living in different cities and communities, with different occupations, 

age, and gender, behave differently. Therefore, before implementing smart mobility solutions, demand 

study or even pilots should be done to understand user behavior. These behavioral factors should be 

considered and reflected in the solution design. For example, a smart parking application in China that 

sought to help drivers locate empty spaces found out only after it was rolled out that car drivers in Beijing 

have a tendency to stick to the parking location they usually use and are much less sensitive to price (some 

of them can have their parking expenses reimbursed by their employers) and availability than was originally 

assumed. Another important behavioral factor is the “rebound effect” [Greening et al. (2000)] in the energy 

efficiency literature or the “induced demand” [Downs (1962)] in the transport literature. The phenomenon 

is that when a smart mobility solution reduces congestion and makes travel more convenient, people will 

travel more and consume more energy. The existence of such a rebound effect was confirmed by many 

studies, but estimates of the magnitude vary. Studies show that the magnitude of the rebound effect increases 

with the level of congestion [Hymel et al. (2010)], but is generally modest. A recent review paper found 

that energy efficiency measures generally have rebound effects of 20 percent or less, and the 20 percent 

rebound also contributes to increased consumer amenities [Nadel (2012)]. 

Public as well as private players wish to see the smart mobility solution being used and benefits achieved. 

Therefore, the public and private sector should cooperate to influence users through the power of education 

and marketing, using methods such as campaigns, information boards, advertisements, financial incentives, 

promotion events, competitions, games, and utilization of social networks. Smart mobility initiatives should 

be innovative in attracting users. Being “data-rich” also enables many of these marketing and educational 

initiatives to be personalized. One example is the “Nudge Engines” developed by a startup called Urban 

Engines. The idea is to give small personalized rewards (could be cash, lottery tickets, fare discount or 

points for games) to incentivize commuters to “nudge” their travel behavior. For example, adjusting the 

departure time to travel on the metro at off-peak times therefore reducing congestion at peak travel times. 

Results from the transport pilots conducted in Bangalore, Stanford, and Singapore can be found in Prabhakar 

(2013). 

As smart mobility solutions are “data-driven” with real-time and personalized data, privacy and security 

considerations might deter users. Users stop using similar services after security breaches as they see the 

risks. Most of our interviews showed that privacy and security concerns can be tackled using technology. 

Therefore, anonymization should be taken seriously and a network security specialist should be included in 

the team to make sure the risk of malicious attack is minimized. 

                                            
8 http://www.bbc.com/news/technology-22546490. 
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Another issue is fraud. Fare evasion and misuse of smart card is not uncommon. Didi Kuaidi, the largest 

taxi-hailing application in China, claims to have more than 130 million users. However, it is not clear how 

many of these are real users, and how many are actually changing their behavior. The number of users and 

trips made each day using the application is mysterious because a portion of the trips are generated by “fraud 

bots”—apps developed on smartphones to take advantage of the cash incentives given to users for 

promotion purpose. A significant portion of real users only uses the application when there are promotional 

credits. It is hard to tell the behavioral change implications when those incentives are gone. 

 

Physical conditions 

 

Infrastructure and user interfaces should be properly designed for easy and convenient use by users with 

due consideration given to users’ access to technology. For example, if the smartphone penetration rate is 

not very high among targeted users, smartphone apps on bus arrival time need to be complemented by 

traditional methods of communication, for example, electronic boards at bus stops; if Wi-Fi is not available 

inside the bus, screens and signs should be provided inside the vehicle where they can easily be seen.  

The smart mobility solution will not be able to change people’s behavior if there is no other option 

available. For example, for a service that provides real-time traffic congestion information to drivers with 

the aim of changing drivers’ routing choice when the road is congested, an interconnected road network is 

needed to provide the driver with an alternative route leading to the same destination. When London 

implemented its congestion-charging scheme, alternatives were carefully studied with completely 

interconnected road networks, especially the ring roads and sufficient coverage of public transport services 

[Litman (2006)]. 

(4) The solution is scaled up and evolves over time 

To maximize their benefits, smart mobility solutions need to be scaled up and evolve over time. Therefore, 

it is important for these solutions to be financially sustainable in the long run, taking advantage of the 

network externality (user and equipment penetration rate is one of the key parameters leading to maximum 

benefits) and scale economy (which is also exhibited in companies providing information services). It is 

beneficial for the city as a coordinator to involve all players and align their interests. Technically, a healthy 

“ecosystem” of players in the field needs to be cultivated with an evaluation mechanism to enable learning 

and evolution in order to adapt to future changes. Finally, existing ICT infrastructure can lower 

implementation costs, but ubiquitous high-speed broadband is not always necessary.  See Figure 5 for a 

summary. 
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Institutional conditions 

 

All players in the smart mobility field want to gain more users and scale up. However, different players 

have different goals and agendas. In order to develop a sustainable business model for smart mobility 

solutions to scale up, it is important to involve all potential players (those who might benefit, as well as 

those who might be hurt) and align their interests. For example, a solution for street cleaning might benefit 

local business owners, local residents, as well as bus companies because garbage at the curb affects 

passengers’ boarding experience. Involving all players maximizes the potential funding and also mitigates 

the risk of future conflict. 

City agencies have their own goals. For example, the transport management agency might put congestion 

reduction as a priority while traffic police focus on road safety. Users want better services with less costs; 

application developers want to accumulate user base, while some tech giant wants online payment data; 

NGOs have their own missions and agendas. It is actually not difficult to figure out the incentives and 

interests of all the players, therefore, it is feasible to find alignment. In many cases, cities or NGOs serve as 

the coordinator that aligns different interests into a sustainable business model because they have more 

coordination capacity. For example, Connekt, an NGO in the Netherlands, has a “Lean and Green” initiative 

to use technology to optimize freight routing and cargo combination in collaboration with different logistics 

companies to reduce greenhouse gas emissions in the freight sector. It was successfully scaled up to cover 

more and more companies because the initiative is aligned with the private companies’ main objective of 

saving fuel costs. Another example, SFpark, a project of the San Francisco Municipal Transportation 

Figure 5 Conditions for Step 4: Scale up and evolve over time 
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Authority (SFMTA), wasn’t able to scale up to larger areas because there was no benefit-sharing mechanism 

(due to complex property rights issues), therefore, the solution was not financially sustainable.  

 

Technical conditions 

 

In order for the solutions to scale up and be able to learn to evolve, it is important to cultivate a “technical 

ecosystem” with products, experiences, skills, and a community that is conducive to learning. This 

ecosystem includes technology vendors and device manufacturers, solution providers, system integrators, 

data aggregators, data analysts, network designers, Internet security specialists, application developers, 

investors, and entrepreneurs. This ecosystem can be cultivated by open-data, hackathons, and knowledge-

exchange events such as workshops, trainings, conferences, and forums. It will also benefit from 

standardization and collaboration efforts. One example is the CitySDK initiative in Europe. CitySDK is a 

“service development kit” implemented as a collection of standardized/harmonized APIs for smart city 

applications. For developers, it is easier to scale up to other cities due to better interoperability; it can also 

bring a greater variety of applications to cities and encourages cities to release similar datasets in similar 

formats.9 CitySDK users also form a community that works on similar projects and speaks the same 

language with a common platform for knowledge exchange.  

Measuring and evaluating results is also key for learning and evolving. Transport for London (TfL) uses 

surveys and focus groups, both before and after the implementation of a solution, to evaluate public 

satisfaction. TfL also develops the system monitoring framework so that key performance indicators are 

monitored regularly and impacts of initiatives on these indicators (especially the journey time reliability) 

are evaluated consistently. Indeed, monitoring and evaluation appear as critical also because unless 

measured through a properly developed set of indicators, it is impossible to measure if the solution is 

actually improving the situation. City Protocol, a global collaborative innovation platform for smart cities 

solutions, is working toward an interoperable framework, including concept definition, common vocabulary 

for city data, and more importantly, a standardized cross-sectorial City Evaluation Framework consisting 

of a common set of indicators for cities to measure.10 

 

 

 

 

 

 

 

                                            
9 http://www.citysdk.eu/. 
10 http://cityprotocol.org/. 
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Box 3 ITS interfaces and interoperability 

As ITS have evolved, the issue of interoperability and communication between different systems has become an 

issue. Of course, there is a need for standardization, open communication protocols, and data feeds so that different 

types of equipment from different suppliers can work together. However, this has been difficult to achieve over the 

years partly because technology is rapidly evolving and partly because of proprietary systems, and commercial 

sensitivity and protection of commercial assets.   

Equipment suppliers are often at the forefront of innovation and development and it is natural that they would wish 

to protect their investment.  On the other hand, there are benefits to be achieved from opening up proprietary 

systems.   

In the technical specification of ITS it is crucial that communication and data exchange protocols are specified 

early on in the design process.  However, as seen below, this is not always straightforward. 

Communication protocols:  Development of communications standards is normally a “negotiated process” with 

many vested interests (i.e. manufacturers, local authorities).  Simply calling for a standard by a higher authority or 

a client is not enough; intelligent usage and enforcement are also required.  An example is CEN 278 for DSRC 

(Dedicated Short Range Communications)—it has been a European standard for many years, but vendors developed 

proprietary or secret “profiles,” which have limited interoperability for years.     

Another example is in the United States of America, where the National Transportation Communications for ITS 

Protocols (NTCIP) is a joint standardization project of American Association of State Highway and Transportation 

Officials (AASHTO), Institute of Transportation Engineers (ITE), and National Electrical Manufacturers 

Association (NEMA) with funding from the Federal Highway Administration (FHWA).  Its aim is to standardize 

communication protocols between different manufacturers’ ITS systems and equipment—such as Area Traffic 

Control (ATC) equipment, CCTV, VMS, etc.  NTCIP is currently becoming the default standard in China.   Most 

North American manufacturers claim that their traffic control equipment are NTCIP compliant.  In other parts of 

the world, manufacturers can address NTCIP requirements through their affiliation with other companies and/or 

are in the process of developing their own NTCIP-compliant products.   

However, even NTCIP may still be far from becoming a universal standard in the industry. NTCIP allows for 

mandatory modules (Management Information Bases, or MIBs) and optional MIBs.  The intent was that 

mandatory MIBs be used for standard functions and optional MIBs be used for enhancements, sometime 

proprietary.  However, manufacturers have often opted to use optional proprietary MIBs to handle many standard 

functions.  Because of this, NTCIP may not provide much interoperability.   

Europe, on the other hand, has taken a different approach through a more collaborative approach, but based on 

national protocols, including the United Kingdom’s Urban Traffic Management and Control (UTMC) and 

Germany’s Open Communication Interface for road Traffic control (OCIT). The Information Technology 

Standards Committee (ITSC) specification supports a variety of existing and new access technologies and ITS 

applications. The term ITSC denotes communications protocols, related management, and additional functionality. 

It is arranged as a tool box as ITSC is independent of specific communication technologies and ITS applications. 

The ITSC architecture is intended to be an open-systems architecture—one that is not proprietary. 

Data exchange—transfer protocols, APIs, data formats:  For data exchange, there is a need for the development 

of standardized data transfer protocols in cooperation with the manufacturer of the ITS system. Again, this can and 

should be specified at the design stage, but care needs to be taken to avoid any skew towards a particular system or 

manufacturer even at this early stage of functional specification. Another key element here, in addition to the 

hardware, is the interaction with the software.  This is generally considered to be best done through Application 

Programming Interfaces (APIs); these are software routines with functionalities that are independent of the 

hardware and of the system, and they can provide a program, such as a trip planner or bus times, for example, to 

enable more efficient and seamless trips.  Supporting APIs are the data formats and while there is less of a need 

for standardization here (as the API can manipulate the data feed), it is certainly beneficial to evolve more 

standardized datasets such as the General Transit Feed Specification (GTFS), which defines a common format for 

PT schedules and associated geographic information. 
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Physical conditions 

 

Having good ICT infrastructure is important to scale up smart mobility solutions. For example, the Seoul 

Metropolitan Government owns most telecommunications infrastructure such as the fiber optic lines along 

the subway and expressways. Seoul, therefore, was able to roll out major data-intensive initiatives without 

worrying about bandwidth. The Barcelona City Council also owns most of the fiber optic network in the 

city and enjoys low maintenance costs for many smart city initiatives. Therefore, the City Council ordered 

that whenever civil work happens—for example, construction of subway tunnels and waste systems—it has 

to leave room for communication infrastructure. However, high-speed broadband is not necessary to take 

advantage of technology. For example, despite having limited broadband connectivity (both mobile and 

fixed), Nairobi was able to develop two of the most innovative platforms used in 2G environments—M-

PESA, the world’s largest mobile payment platform, and Ushahidi, a crowdsourcing platform [Mulas 

(2014)]. 

Box 4 Broadband or narrowband?  

Both broadband and narrowband communications are vital for successful deployment of ITS.  Cities with a legacy 

of early ITS deployment, such as Barcelona and Copenhagen, have benefitted from the early installation of a fiber 

optic (FO) broadband network, typically below ground.  Emerging cities in China typically install FO above 

ground; and this has also often been the case in Japan and South Korea.   

Broadband is a robust technology that provides the framework for mobile phone (cell phone) applications through 

on-site Wi-Fi.  If there is already a broadband network, then it is likely to be worthwhile to maintain or upgrade 

this depending on the cost. 

However, technology evolves rapidly, and narrowband is becoming most cost effective, particular for roadside 

sensors. Typically, narrowband can be deployed quickly citywide as it does not use Wi-Fi but uses the radio 

spectrum and radio technology. Narrowband has already been deployed to control smart lighting and parking 

sensors.  If narrowband evolves successfully and if costs reduce, there is a case for considering this as an alternative 

to broadband. 

It is hard to present advice to individual cities without detailed knowledge of their specific needs and infrastructure.  

Suffice to say that emerging cities should examine the potential to benefit from the “latecomer’s advantage” and 

should evaluate both technologies. 

 

4. How energy savings are achieved by ITS investments in the smart cities 

context  

There have been several commonly used models for understanding energy consumption (greenhouse gas 

emissions) in the transport sector. The “ASIF framework” breaks transport energy use down into activity, 

modal share, and energy intensities [Schipper et al. (2000)]. Others organize mitigation approaches into 

behavior (number of vehicles), design (distance traveled), and technology (emission/energy per vehicle-

distance traveled) [Wright and Fulton (2005)].. A more recent “ASIF2” paradigm and its variances 

summarize mitigation measures into avoid, shift, improve, and finance [Dalkmann and Brannigan (2007)]. 

All models are actually pretty similar and straightforward. Considering that the intervention in focus is ITS 

investments in the smart cities context, which are “people-centric,” not pure vehicle or communication 

http://www.safaricom.co.ke/personal/m-pesa
http://www.safaricom.co.ke/personal/m-pesa
http://www.ushahidi.com/
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technology nor policy or regulatory interventions such as vehicle standard or fuel price, this study 

emphasizes the energy savings through users’ behavioral change. 

We can see from the conceptual model presented in the previous section that energy savings are achieved 

through users’ behavior changes resulting from using the smart mobility solutions (Step 3). These 

behavioral changes can be grouped into three categories based on their results: (i) less travel (reduction in 

total vehicle-distance travelled), (ii) modal shift (users switch to a less energy-intensive mode), and (iii) 

reduction of per-km energy consumption (fewer stops, faster speed) in the short term. Smart mobility 

solutions as an enabler could also lead to other energy-saving policies or initiatives, which would otherwise 

not be feasible. In the long term, users’ lifestyles could change and changes in vehicle ownership, work 

location, residential location, and activity pattern can lead to further energy savings. 

4.1 The short-term effect 

(i) Less travel 

Smart mobility solutions could reduce vehicle-distance traveled in many ways. For example, a taxi-

hailing app matches a taxi driver’s location and routes with real-time demand so that drivers do not need to 

drive around looking for passengers. Car-sharing and carpooling could combine two trips into one thereby 

reducing vehicle travel.  

Smart-parking apps help drivers easily find available parking spaces. It was estimated that SFpark 

reduced vehicle-distance travelled by cars in search for on-street parking spaces by 50 percent [Millard-Ball 

et al. (2014)]. Real-time communication with the traveler about road conditions, accidents, and construction 

could reduce travel time as travelers pick better routes and avoid cruising.  

(ii) Modal shift 

When the use of smart mobility applications increases the attractiveness of a less energy-intensive 

(“greener”) mode such as public transport, biking, or walking, users might switch from private cars to the 

greener mode. For example, applications such as multimodal trip planners (e.g., Moovit and Citymapper), 

public transport information (e.g., NextBus and MyTransport Singapore), and bike-sharing that either 

decrease the money and time costs, increase comfort and satisfaction, add enjoyment, or change people’s 

perception and attitude, all have the potential to encourage users to switch modes. One study showed that 

mobile real-time information reduces not only the perceived wait time, but also the actual wait time 

experienced by transit riders. Data of OneBusAway transit traveler information system in Seattle reduced 

users’ actual wait time by two minutes and an additional 0.7 minutes for perceived wait time [Watkins et al. 

(2011)]. Studies show that people are more satisfied with public transport with real-time bus information 

services and people are willing to pay 19 percent to 24 percent more over their bus fares for the information 

provision [Papaioannou et al. (1996); Politis et al. (2010)], and that real-time bus information increases bus 

ridership [Tang and Thakuriah (2012)]. One study done in city of Thessaloniki, Greece, showed that 20 
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percent of users make more trips as a consequence of the information system, and 24 percent of these new 

trips would have been made by car [Politis et al. (2010)]. 

 (iii) Reduction of energy per vehicle-distance traveled 

Traditional ITS measures, for example, adaptive signal control, ramp metering, and vehicle platooning, 

save energy by smoothing traffic flow and improving fuel efficiency. Smart mobility solutions that reduce 

congestion (including those targeting road accident detection that shorten the time of congestion caused by 

accidents) could also result in smoother traffic flow and increase the average speed thereby increasing fuel 

efficiency for most vehicles. Eco-driving solutions promote a driving style characterized by accelerating 

slowly, cruising at more moderate speeds, avoiding sudden braking, and idling less, as well as selecting 

routes that allow more of this sort of driving [Lovejoy et al. (2013)]. One experiment of providing real-time 

fuel efficiency information on the dashboard to drivers showed 2.9 percent average improvement in fuel 

efficiency [Kurani et al. (2013)]. An experiment in Taiwan showed that cash rewards (NT$5 per liter fuel 

saved) given to bus drivers increased fleet average fuel economy by more than 10 percent [Lai (2015)]. The 

variable speed limit experiment in Madrid showed a local reduction of about 2 percent in fuel consumption 

due to less stop time and reduced average positive acceleration. 

More examples of energy saving potentials are summarized in Table 1, which includes some traditional 

ITS interventions because similar studies for recently developed smart mobility interventions were 

extremely scarce and very few estimates are available.  

Caution should be taken to use or reference the results from the literature. Some of these studies suffer 

from methodological caveats as many factors influencing behaviors are difficult to control. Neglecting 

selection bias is especially common in the eco-driving literature. These estimates might also be subject to 

“publication bias” as studies that show negative or insignificant results are less likely to be published and 

the significance of the published studies is overestimated. The actual effect, therefore, might be much 

smaller. 
 

  

https://en.wikipedia.org/wiki/Statistically_insignificant
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Table 1 Examples of energy saving estimates of ITS investments 

Behavior change More examples, including some traditional ITS interventions 

Less travel  Car sharing reduced Vehicle Kilometers Traveled (VKT) overall by about a quarter to a 
third among those who have participated [Martin et al. (2011)]. 

 Dynamic message signs and Highway Advisory Radio (HAR) reduced 66,000 vehicle 
miles driven to 99,000 vehicle miles driven in the Grand Canyon National Park. 

 Stockholm congestion charging reduces VKT by 14 percent. 
 Milan congestion charging reduces VKT by 14 percent. 
 A shift to accident insurance per mile (PAYD), rather than in a lump sum, would reduce 

driven kilometers by 8 percent. 
 Planning systems in taxi companies in Taiwan reduce fuel consumption by 16 percent. 
 Integrating traveler information with traffic and incident management systems in Seattle, 

Washington, could lower fuel consumption by 0.8 percent. 

Modal shift  Personalized travel planning system in Nagoya, Japan, helps commuters choose 
environmentally friendly routes and modes, and reduces carbon dioxide emissions by 20 
percent. 

Reduction of 

energy per 

vehicle-distance 

traveled 

 The E-ZPass electronic toll collection system on the New Jersey Turnpike is estimated to 
save 1.2 million gallons of fuel each year. 

 Signal system in Richmond, Virginia, reduced fuel consumption 10 percent to 12 percent; 
13 percent in Los Angeles; coordinated signal timing on the arterial network in Syracuse, 
New York, reduced total fuel consumption by 9 percent to 13 percent. 

 A transit signal priority system in Southampton, England, reduced bus fuel consumption 
by 13 percent; Helsinki, Finland, reduced by 3.6 percent. 

 An adaptive signal timing in Gresham, Oregon, in 2007 saves over 74,000 gallons of fuel 
every year. 

 Adaptive signal control systems in two corridors in Colorado reduced fuel consumption 
by 2 percent to 7 percent. 

 In some EU cities, Adaptive Cruise Control reduces an average fuel consumption of 5 
percent. 

 Smart Motorways (variable speed limits and flexible shoulder access) reduced fuel 
consumption by 4 percent in the United Kingdom. 

 SPECS cameras for speed enforcement in the United Kingdom achieved 11.3 percent fuel 
savings. 

 Platooning in EU motorways generates fuel savings of 8 percent to 11 percent. 
 The Safe Road Trains for the Environment (SARTRE) project demonstrated up to 16 

percent reduction in fuel consumption with vehicle platooning.  
 Urban drive control (UDC) systems in Torino, Italy, traffic light approach control (TLC) 

reduced fuel consumption by 8.3 percent to 13.8 percent. 
 Intelligent speed control applications can reduce fuel consumption by 10 percent to 20 

percent without drastically affecting overall travel times. 
 In the European Union, fuel-consumption/energy-use indicator generates fuel savings at 

an average of 5 percent. 
 In Sweden, drivers educated in eco-driving had 7 percent lower fuel consumption than 

conventional drivers. In Gothenburg, a similar study for distribution-truck drivers shows 
that after education in eco-driving, fuel consumption decreased by 17 percent. 
Experiments in Madrid, Spain, and Turin, Italy, showed 13 percent to 15 percent reduction 
in fuel consumption.  

 Incident detection, adaptive signal control, and transit signal priority implemented on the 
Atlanta Smart Corridor reduced fuel consumption by 34 percent across all peak periods. 

Source: US DOT ITS Benefits Database; ICT-emissions, 201511; ITS UK, 201312; Klunder, 2009; Vaidyanathan, 2014. 

                                            
11 http://www.itsbenefits.its.dot.gov/. 
12 http://www.its-uk.org.uk. 
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4.2 Enabling effect  

Smart mobility interventions could also be an enabler for implementing other interventions or policies 

due to their ability to collect and analyze real-time and personalized data. Parking schemes, road-pricing 

schemes, public transport pricing and subsidies, special mobility service provision, other enforcement and 

education measures, all can be on-demand, targeted, customized, and adaptive in real time. These initiatives 

and policies enabled by ITS investments in the smart cities context would achieve energy savings via both 

technology and behavior changes. 

4.3 The long-term effect 

In the long run, smart mobility solutions might change people’s lifestyles. While ride-sharing is able to 

combine trips leading to less travel, it is still unclear how newly emerged Transportation Network 

Companies (TNCs) such as Uber, Lyft, GrabTaxi, and EasyTaxi that provide ride-sourcing services would 

change people’s travel behaviors and what the aggregate impact would be on energy use. However, in the 

long term, it is plausible that with more mobility options, and much more convenient transport services 

provided in the city through smart mobility solutions, there is less incentive for people to own private cars 

(like the on-demand mobility vision in Helsinki). For example, four years after the introduction of City 

CarShare in the San Francisco Bay Area in California, 29 percent of CarShare members had gotten rid of 

one or more cars [Cervero (2007)]. Although there are no relevant studies, observations in some cities in 

China showed that ride-sourcing apps and their variances (car-rental, shuttle services, chauffer services, and 

delivery services) are making private car ownership less and less attractive for people, especially the 

younger generations. Lifestyle change might also include the locations of work and residence as well as 

activity patterns. With more people preferring to live in dense urban centers, travel demand is less. As more 

people use public transport, bikes, and walk to get around, there are fewer private vehicles so cities do not 

need to build more infrastructure such as roads and parking. Energy savings are thus achieved in the long 

run. 

5. Applications to a Bank-financed project: Wuhan Integrated Transport 

Development Project 

Table 2 summarizes the key themes and conditions for successful implementation of smart mobility 

initiatives at each step as discussed in the previous sections. In this section we apply the main findings of 

the research to the Bank-financed Wuhan Integrated Transport Development Project (WITDP, 148294). 

The Board of Directors of the World Bank on February 26, 2016, approved this project, which is currently 

under implementation in the cities of Wuhan and Anlu in Hubei province in China. Wuhan has a population 

of close 10.3 million and Anlu 0.6 million. Both are located in the Wuhan Metropolitan Region that has in 

total close to 30.9 million inhabitants. In addition, the team also carried out a Tool for Rapid Assessment of 

City Energy (TRACE) analysis for the city of Wuhan.13  

                                            
13 See http://www.worldbank.org/projects/P148294?lang=en.  

http://www.worldbank.org/projects/P148294?lang=en
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Table 2 Summary of key themes and conditions for successful implementation of smart mobility initiatives 

Step Key themes Institutional conditions Technical conditions Physical conditions 

1. A mobility 

problem is 

identified and a 

smart mobility 

solution is 

designed. 

People-centric  

 

Avoid an ITS 

solution looking 

for a problem 

 

Innovation 

A channel of public participation for 

problem identification and design 

comprising apps, social networks, e-

government and traditional channels such 

as call centers, mail, and in person. 
 

A collaborative setting for all players 

embracing public/private partnerships as 

well as academia. 

Seek innovative ideas through 

urban living labs and 

community events such as 

hackathons and open-data 

challenges. 
 

Enable private sector 

involvement 

 

2. The ITS 

solution is 

deployed and 

operated. 

City champion 

 

Long-term vision 

 

Data sharing 

A long-term vision and coalition of support 

for transport. 

 

Minimum institutional capacity to enable 

transparent and performance-based 

contract management and monitoring.  

 

An administrative authority with real 

power for interagency coordination.  

 

Institutional (including legal) arrangements 

for data sharing and open data.  

Technical capacity for data 

collection and integration, data 

analyses, and information 

service provision.  
 

Standardized data format 
 

If cities choose to use third-

party providers, capacity is 

needed to procure and monitor 

these services. 

A coherent road 

network infrastructure. 
 

Availability of 

transport and ICT 

infrastructure and 

devices  
 

Infrastructure and 

hardware such as 

sensors for collecting 

data 

3. Users use the 

solution and 

change their 

behavior 

accordingly. 

Energy savings 

 

Behavior change 

Coherent green policy 

 

Transparency and information sharing to 

build trust 

 

Public participation 

 

Consistent enforcement 

Understand demand and 

anticipate behavioral factors 
 

Marketing and education 

combined 
 

Public/private partnerships 
 

Privacy, security, ethical and 

fraud issues 

Properly designed 

infrastructure and user 

interface 

  

Alternatives for 

behavior change 

4. The solution is 

scaled up and 

evolves over 

time. 

Evaluation and 

monitoring 

Involve all players and align their interests Cultivate a technical ecosystem 
 

Measure and evaluate results 

ICT infrastructure 
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5.1 Project background and scope 

Wuhan has already invested in Intelligent Transport Systems (ITS) and built the foundations for “smart” 

transport planning, management, and monitoring. In recent years, Wuhan city agencies have implemented 

systems that include: (a) Area Traffic Control (ATC) signals; (b) CCTV traffic-monitoring cameras; (c) e-

police enforcement cameras; (d) a traffic guidance system; (e) public bus monitoring and dispatch systems; 

(f) a “floating-car” taxi-monitoring system; (g) bridge-and-tunnel electronic toll-collection (ETC) systems; 

(h) a highway toll-collection system; and (i) a public transport-monitoring system using smart cards. In 

addition, mobile, including mobile broadband (3G/4G), penetration is widespread in Wuhan, with extensive 

use of social media, which offers a strong foundation for the provision of access to transport data and 

information through smartphone apps as well. The added value of the investments under this project will be 

to utilize the substantial data, which have been gathered and processed strategically and efficiently, to 

inform transport network design, operational planning, and management, as well as system performance 

monitoring by the municipal government and system users. Therefore, significant focus is placed on 

“analytics” and “smart” evidence-based decision making. 

A key step at this stage is the integration of and data capture from Wuhan’s multiple ITS components 

and modules. Separate agencies manage these modules without standardization or interoperability, and data 

or information sharing has been limited.14Analyses undertaken are also disaggregated, thus limiting their 

benefits and applicability. The project offers an excellent opportunity to apply cutting-edge technologies to 

increase data capture (e.g., a variety of sensors/monitoring equipment—“Internet of Things” [IOT]); 

analytical tools and techniques to handle large data volumes (“big data/analytics”); and cloud computing to 

facilitate the more effective and efficient sharing of information-system infrastructure and resources. Non-

compatible legacy systems will be progressively phased out and superseded by a unified portal. Developing 

such a “one-stop” portal for all of Wuhan’s ITS and associated systems will facilitate more widespread 

access to data and information and provide powerful tools for analysis and decision making. 

Use of cloud computing (shared services) can help make infrastructure more scalable for end users by 

enabling elastic capacity planning for individual participating agencies. Cloud computing will support and 

encourage the adoption of standardization and sharing of ICT services across Wuhan Municipal 

Government (WMG) agencies responsible for transport and urban planning. The ability to use virtual 

servers, virtual storage, and virtual networking should also result in much lower capital expenditure for 

establishing the overall cloud computing infrastructure. 

WMG decided to use a large-scale commercial cloud service for the integration of all transportation-

related data from different agencies by establishing the city-level transport information cloud. Based on data 

                                            
14 Existing operational ITS are operated by three agencies under the municipality: the traffic police operate coordinated traffic 

signals, e-police enforcement, and traffic guidance systems; the bus company operates bus monitoring, dispatch, and passenger 

information systems; and the Urban Road and Bridge Management Center operates electronic toll collection on bridges, tunnels, 

and highways. These were developed independently because they had different objectives and functions: traffic operations and 

enforcement; bus operations; and toll collection. This is fairly standard in most cities, even developed ones, and it is only very 

recently that cities are beginning to integrate these functions. In Wuhan, there have been no previous attempts to integrate these 

systems. 
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security consideration and special needs of local agencies, this project will set up a transport information 

repository: a smaller-scale data center housed in Wuhan is the Wuhan Transport Development and Strategy 

Research Institute (WTDSRI). This repository will have raw and processed data feeds from the city-level 

transport information cloud, and will provide local data backup and data services for the two platforms 

hosted in the center. In other words, the city-level transport information cloud will be the hub for the storage, 

integration, and sharing of all transport-related data in Wuhan. The local transport information repository 

will complement the cloud and play two strategic roles: data backup, and hosting the decision service 

platform and basic data and research platform to support the government’s transportation policymaking. 

WTDSRI is an institute specialized in transportation planning and policy research. It is considered ideal for 

managing the Transport Policy Support Center. 

The city-level transport information cloud and the local Transport Policy Support Center (with integrated 

transport data from all sources) can provide high-quality data and analytical services to different agencies 

to help them improve management and planning, and provide better transport services to residents. The 

intelligent comprehensive traffic management system to be developed for the Wuhan Traffic Management 

Bureau (WTMB) will improve operations, reduce congestion, and monitor road conditions, command and 

dispatch, and traffic signal control. The integrated transportation information system developed for the 

Wuhan Transportation Commission (WTC) will improve operations and management of in- and out-of-city 

traffic, with data integrated from urban railways, waterways, intercity roads, airlines, urban buses, subways 

and taxis, and will support the coordinated monitoring and management of all modes. The smart-parking 

management information system for the Wuhan Parking Corporation (WPC) will integrate on-street, off-

street, and public parking information in the city, and will provide real-time availability monitoring, 

hierarchy parking guidance, electronic payment, customized booking, and searching services for residents. 

The project will emphasize capacity building—both technical and institutional—for the sustainable 

operations of these systems. 
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5.2 Knowledge incorporated in project design 

Several key lessons learned from international best practices include: smart cities thrive with public 

participation and engagement, and classic “top-down” approaches need to be strengthened with “bottom-

up” perspectives; governments need to have at least minimal technical and institutional capacity to be able 

to procure and manage performance-based contracts; open data are beneficial with consideration of privacy 

and security; and standardization and system interoperability are essential. The design of the WITDP 

considers and incorporates these lessons. Specifically, following the four essential steps in the conceptual 

model:  

Step (1): A mobility problem is identified and a smart mobility solution is designed. Institutional 

conditions include establishing channels of public participation for problem identification and design. The 

project took advantage of the existing e-government initiative in Wuhan and utilized also the resources of 

“Wuhan’s Citizen’s Home” (the “one-stop” center for Wuhan citizens to get administrative approval, public 

services, and information from government agencies established in 2012) as channels of public participation 

and information dissemination. 

Figure 6 Stylized representation of Wuhan ITS component of the WITDP 
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Step (2): The smart mobility solution is deployed and operated. One of the institutional conditions is that 

an authority with real administrative power is needed to facilitate the cooperation and integration of different 

agencies in the city. In the Wuhan case, this condition is realized by a very strong city government 

leadership—the Wuhan “Internet+” Action Committee (WIAC)—that` was established by the Wuhan 

Municipal Government (WMG) in July 2015 to provide overall leadership, strategic guidance and 

institutional coordination for all smart city initiatives in Wuhan, including the Wuhan component of this 

project. WIAC, housed in the WMG’s Internet and Information Office, is headed by the municipal party 

secretary and has the mayor as vice director. WIAC reviews, approves, and coordinates the implementation 

of all smart city projects in Wuhan. Wuhan Project Management Office (WPMO) will report to WIAC with 

relevant project information when strategic guidance and coordination from WMG are necessary.  

There is also great emphasis on the minimum technical capacity to procure and monitor information 

services. The Wuhan ITS component of the WITDP promotes data integration and data format 

standardization, and also proposes a schedule to open data gradually with technical, privacy, and security 

considerations. Therefore, the Project Implementation Unit (PIU) for the Wuhan ITS component is the 

Wuhan Transport Development and Strategy Research Institute (WTDSRI), which has the highest technical 

capacity in transportation data analysis and research. All other subcomponents will also be implemented by 

agencies with the highest technical capacity in their respective areas. Capacity-building activities designed 

under the project will focus on system implementation and operation.  

Step (3): Users use the solution and change their behavior accordingly. Lessons show that institutionally, 

policy signals should be coherent leaning toward the “green” modes. In the WITDP, the expectation is that 

the smart mobility solutions planned for Wuhan will be used by users that range from the mayor and other 

decision makers, to planners, users of public transport, and pedestrians, among others. The project 

contemplates several “platforms” that will provide information according to the needs of each of these users. 

In addition, the project also contemplates open-data initiatives to allow developers of applications to 

maximize the use of the data generated by the “platforms.”   

In addition, the design for the Anlu parts of the WITDP built upon lessons learned in Wuhan—which has 

had two previous projects financed by the World Bank—and from other Bank-financed urban transport 

projects in China. In addition, Anlu expressed a desire to follow a green growth trajectory by laying the 

foundation for a public transport and Non-Motorized Transport (NMT) system that is an efficient alternative 

to cars. Technical assistance activities to be financed by the WITDP for Anlu are also designed around this 

ambition—on urban transport strategy and planning, road safety, parking policy, and non-motorized 

transport—to make sure coherent policy signals are sent to the users in Anlu.  

Physically, the Anlu part of the project focuses on infrastructure investments in its transport system to 

improve public transport through integrated corridors—a comprehensive approach that improves the entire 

corridor by giving priority to public transport and NMT—as well as additional sidewalk improvements. 

These integrated infrastructure investments improve the connectivity of road network, provide basic traffic 

management measures, and improve public transport and NMT services, which not only lay the 

infrastructure foundations for smart mobility solutions, but also provide users with alternatives for “green” 

behavioral changes.   
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Finally, Step (4): The smart mobility solution is scaled up and evolves over time. Financially and 

technically-constrained cities in developing countries can take advantage of resources from the private 

sector and citizens thanks to aligned interests in improving user experience. In the Wuhan ITS component 

of the project, WMG established a long-term partnership with a private company by using its large-scale 

commercial cloud service for the integration of all transportation-related data from different agencies to 

establish the city-level transport information cloud. Measuring and evaluating results is also important for 

learning and evolving. The team has put great effort into working with its counterpart to design the project’s 

Monitoring and Evaluation (M&E) framework so that impacts on final beneficiaries are demonstrated 

through Specific, Measureable, Attainable, Relevant, and Time-bound (SMART) indicators for learning 

and evolving purposes, and both cities’ capacity for measuring and evaluating results are also strengthened. 

5.3 TRACE analysis for Wuhan 

While the lessons learned from international best practices in the conditions for successful 

implementation of smart transport solutions are incorporated into project design, the lessons learned on how 

and how much energy savings are achieved by smart transport solutions could be used to strengthen the 

recommendations made to Wuhan for the purpose of energy efficiency. The team developed these 

recommendations using the Tool for Rapid Assessment of City Energy (TRACE) analysis.  

TRACE is a decision-support tool to help cities identify underperforming sectors in terms of energy 

efficiency by comparing them to peer cities, evaluating improvement and cost-saving potential, and 

prioritizing sectors and actions for energy efficiency intervention.15 

The team utilized the TRACE tool to evaluate potential energy savings and provide energy efficiency 

recommendations to the urban transport sector in Wuhan. The TRACE tool was designed to help prioritize 

energy savings across six sectors—passenger transport, municipal buildings, water and wastewater, street 

lighting, solid waste, and power and heat. It consists of three principal modules: 

(1) Energy benchmarking: Compares Key Performance Indicators (KPIs) across peer cities such as 

percentage modal split for Non-Motorized Transport (NMT), which covers cycling and 

walking;  

(2) Sector prioritization: Identifies sectors that offer the greatest energy cost savings potential; and 

(3) Intervention selection: Provides “tried and tested” energy efficiency solutions.  

For this study, the passenger transport sector was prioritized and interventions were explored using the 

TRACE tool to facilitate the linked World Bank loan project to identify energy efficiency in Wuhan. During 

the course of the preparation of the WITDP, the project team visited Wuhan and conducted interviews with 

officials from a broad range of city agencies to collect energy use information for the city as well as for the 

transport sector. The data was then fed into the TRACE tool to conduct the current energy use benchmarking 

with other cities in the TRACE database. The initial energy saving potential was then estimated according 

to the benchmark results as well as the level of the city’s control over transport sector authorities. Finally, 

                                            
15 http://esmap.org/TRACE. 
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recommendations were provided based on the energy saving evaluation and the city database. The initial 

energy saving potential, assets, and infrastructure, with detailed information on each of the strategies, are 

also provided. 

The energy benchmarking finds that Wuhan has: 

 Relatively high citywide primary electricity consumption per capita; 

 Relatively high citywide energy consumption per capita; 

 Low average length of high-capacity transit routes per 1,000 people;  

 High private transport energy consumption; and 

 Total transport energy use per capita, public transport energy consumption, and public transport 

mode split ranks in the middle when compared with peer cities. 

According to the diagnostic results, it is estimated that potentially 31 percent can be saved in public 

transport energy costs and 20.2 percent in private vehicles’ energy costs.  

Based on Wuhan’s specific situation, the TRACE tool provided the following recommendations for 

energy savings in the transport sector. As discussed in Section 4, all these recommendations achieve energy 

savings through less travel, modal shift, and reduction of per-km energy consumption in the short term. 

Smart mobility solutions, which as an enabler could lead to other energy-saving policies or initiatives that 

would otherwise not be feasible, are not in the “solution base” of TRACE. Some of the interventions achieve 

energy efficiency by long-term users’ lifestyle changes—such as changes in vehicle ownership, work 

location, residential location, and activity pattern. 

 Enforcement of vehicle emissions standards 

Enforcement of vehicle emissions standards not only improves local air quality, it leads to lower fuel 

consumption. Energy saving is achieved through reduction of per-km energy consumption. Vehicle 

emissions standards may be implemented through mandatory regular emissions checks. The higher the 

vehicle emissions standard, the less fuel the vehicle is likely to consume and the higher the reductions in 

the emission of fine particles, nitrogen dioxide, ozone, CO2, and other pollutants. Lower emissions result in 

better air quality and a lower risk of respiratory diseases associated with air pollution. 

 Traffic-flow optimization 

Traffic can be positively managed to ensure the most efficient operation of the transport system. 

Management techniques and Intelligent Transport Systems (ITS) will seek to minimize distance travelled 

between origin and destination, minimize the number of vehicle stops, ensure the efficient flow of traffic, 

and encourage multiple-occupancy vehicle travel. The strategy will encourage efficient use of vehicles and 

minimize journey lengths and vehicle stops, thereby reducing fuel use. 

 Public transport development 

Develop or improve the public transport system and take steps to increase its accessibility and use. 

Energy saving is achieved through modal shift. Public transport achieves lower emissions per capita than 
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private cars and has the potential to provide an equitable transport network. A reduction in the number of 

private vehicles in circulation can lower emissions and improve air quality. 

 Non-motorized transport modes 

Energy saving is achieved through modal shift. Non-motorized transport modes have zero operational 

fuel consumption and require low capital costs for implementation. In addition to improving the health of 

users, their use reduces noise pollution and improves air quality. The benefits include improved air quality, 

lower operating costs for users and providers, and lower infrastructure requirements. However, it should be 

noted that in Chinese cities the term “Non-Motorized Vehicle (NMV)” covers electric bicycles (E-bikes) 

and their numbers have risen substantially since motorcycles were banned in many urban areas. Vehicle 

registration data for Wuhan in 2012 shows E-bikes at 0.7 million and bicycles at 1.17 million. In Wuhan in 

2008, E-bikes comprised 13 percent of the trip modal split with bicycles comprising only 7 percent.16  

 Parking-restraint measures 

Energy saving is achieved through modal shift and long-term lifestyle change. Restricting parking can 

discourage car use and provide an incentive to use more sustainable modes of transport, including public 

transport. Removing vehicles from circulation reduces fuel use and the effects of congestion. 

 Traffic restraint measures 

Energy saving is achieved through less travel, modal shift, and long-term lifestyle change. Discouraging 

potential drivers from using their cars can lead to fewer cars in circulation. This can encourage people to 

use alternative modes, which in turn will increase their viability (increased public transport patronage, for 

example). Removing vehicles from circulation reduces fuel use and the need for road space. 

 Congestion charging 

Energy saving is achieved through less travel, modal shift, and long-term lifestyle change. Congestion 

charging restrains access by selected vehicle types, usually private cars, into large urban areas during 

congested times of the day. The aim is usually to discourage work-based commuting trips into a defined 

urban area. Measures range from complete restriction to discouragement through charging to incentive 

pricing for low-emission vehicles in low-emission zones. It is a market-based mechanism for influencing 

driver behavior that looks to capture the “external cost” of vehicle travel during congested periods of the 

day. 

 Travel planning 

This is one example of smart transport solutions. Energy saving is achieved through less travel, modal 

shift, and reduction of energy per vehicle-distance traveled.  Informing drivers about alternative modes of 

transport and sharing resources with other drivers leads to fewer cars being used and more trips on public 

transport. Removing vehicles from circulation reduces fuel consumption and increases the viability and 

efficiency of public transport. 

                                            
16 Wuhan Municipal Engineering Design and Research Institute (WMEDRI), 2009. 
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 Awareness-raising campaigns  

Public education and training campaigns can increase the public’s awareness and understanding of the 

benefits of energy efficiency and help change attitudes. Energy saving is achieved through modal shift and 

long-term lifestyle change. Providing information on easy ways to be more energy efficient can help modify 

citizen behavior and contribute to overall energy savings. The key benefits are more energy efficient 

behavior by residents leading to reduced energy consumption within the city. For example, encouraging 

people to leave their car at home and take transit instead, or promoting walking for short trips. Indirect 

benefits include reduced pressure on energy infrastructure, reduced carbon emissions, and better air quality. 

The above recommendations can build upon the ongoing programs carried out by the city, and some of 

them can also be combined with the linked WITDP that is financed by the World Bank. A full report on 

how the TRACE tool was applied to Wuhan was prepared and is an ancillary document to this report.17 

6. Conclusions 

We first present the conclusions derived from international best practices and then we use the example 

of applying these conclusions to the WITDP to craft conclusions for other client cities of the World Bank.  

6.1 Lessons learned from international best practices  

Compared to traditional ITS investments, the smart cities context has transformed ITS into “smart 

mobility” with three major characteristics: people-centric, data-driven, and powered by bottom-up 

innovations. These three characteristics bring both opportunities and challenges and are key to 

understanding the conditions for smart mobility solutions to be successfully implemented and achieve 

energy saving benefits.  

We argue that there are four major steps for ITS interventions in the smart cities context to achieve energy 

savings. These are: 

Step (1): A mobility problem is identified and a smart mobility solution is designed. Institutional 

conditions include establishing channels of public participation for problem identification and design, and 

finding a collaborative setting for all players. Seeking innovative ideas through community events such as 

hackathons and open-data challenges is highly beneficial at this step.  

Step (2): The smart mobility solution is deployed and operated. A long-term vision and coalition of 

support for transport is needed. City government needs to have institutional minimum capacity to enable 

transparent and performance-based contract management and monitoring. An administrative authority with 

real power is also necessary for inter-agency coordination. Institutional (including legal) arrangements for 

data sharing and open data is essential as well. Technical capacity is needed for data collection and 

integration, data analyses, and information service provision. If cities choose to use third-party providers, 

capacity is needed to procure these services. 

                                            
17 See “City Energy Efficiency Report: Transport Sector Wuhan.” August, 2015. 
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Step (3): Users use the solution and change their behavior accordingly. These behavioral changes 

translate into less energy consumed. Institutionally, policy signals should be coherent leaning toward the 

“green” modes; transparency is necessary to build trust; and enforcement should be in place and consistent. 

Technically, demand should be understood correctly, anticipating behavioral factors; public and private 

sectors should cooperate to provide marketing and education; privacy, security, and fraud issues should also 

be considered. Physically, infrastructure and user interfaces should be properly designed considering the 

availability of user devices; alternatives should be provided for users’ behavior change.  

Finally, Step (4): The smart mobility solution is scaled up and evolves over time. It is beneficial for the 

city as a coordinator to involve all players and align their interests. Technically, a healthy “ecosystem” of 

players in the field needs to be cultivated and results measured for evaluation to enable learning. 

Energy savings are achieved through users’ behavior changes resulting from using the smart mobility 

solutions: less travel, modal shift, and reduction of per-km energy consumption in the short term. Also, 

smart mobility solutions as an enabler could lead to other energy-saving policies or initiatives that would 

otherwise not be feasible. In the long term, user’s lifestyles could change—such as changes in vehicle 

ownership, work location, residential location, and activity pattern—and this can lead to further energy 

savings. 

6.2 Implications for developing countries 

Compared to cities in developed countries with the best international practices in smart mobility—

discussed in previous sections—cities in developing countries tend to have: (1) lower motorization level, 

but high growth rate and higher congestion levels; (2) less-developed existing infrastructure; (3) less 

financial resources for both capital investment and operation and maintenance expenses [Ardila-Gomez and 

Ortegon-Sanchez (2016)]; and (4) lower institutional and technical capacity. In the context of the smart 

cities movement, where traditional ITS transform into more people-centric, data-driven “smart mobility” 

powered by bottom-up innovations, cities in developing countries face both leapfrog opportunities and also 

challenges in institutional, technical, and physical aspects. Learning from this study, in order to achieve 

benefits from smart transport investments, developing cities should:  

(1) Involve all public and private players in a collaborative and transparent setting. Financially-

constrained cities in developing countries can take advantage of the resources from the private sector and 

citizens thanks to aligned interests in improving user experience. Collaboration and transparency is 

necessary not only for these low-cost innovative smart transport solutions to be developed, but also for 

building trust among all players for these solutions to be used, maintained, and scaled up in the long run. 

(2)   Develop the technical capacity to procure and monitor information services. For innovative and 

usually technically complex smart transport solutions, developing cities with weak technical capacity face 

the risk of technology lock-in and capture by a powerful stakeholder (e.g., big technology provider) for 

excessive profit. Therefore, it is crucial for cities to develop minimum technical capacity to mitigate this 

risk when procuring and monitoring these services.  
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(3)   Focus on basic infrastructure, including a coherent road network and basic traffic management 

measures. With less-developed existing infrastructure, developing cities have the opportunity to establish a 

coherent road network corresponding to land use and with basic traffic-management measures such as traffic 

lights, traffic signs, lane markings, zebra markings, and user education.18 Such a coherent road network is 

not only essential for meeting basic travel demand of the citizens (to avoid the paradox of high congestion 

at low-motorization level), but also strategically important to meet accessibility needs as the infrastructure 

and complementary policies guide future growth, thereby shaping future travel demand patterns.  

The challenge for cities in developing countries is, therefore, to be able to leapfrog by developing the 

necessary capacity to carry out the four major steps for smart mobility interventions to yield positive results. 

Institutional capacity, indeed, emerged in the analysis as a key constituent of these four steps. Yet cities in 

developing countries frequently lack the capacity to properly manage a basic traffic light network. 

Congestion in these cities is very high despite low levels of motorization and seemingly enough roads. This 

point was vividly illustrated on the ESMAP-funded study tour to Barcelona with Chinese government 

officials. During discussions, the key point that was made was that car ownership in Barcelona was 600 cars 

per 1,000 inhabitants whereas in Wuhan that figure was around 200 cars per 1,000 inhabitants. Yet car 

traffic flowed in Barcelona whereas it was jammed in Wuhan. Barcelona also had lots of pedestrian and 

bicycle traffic. The Chinese officials hoped that smart mobility solutions could be implemented not only in 

megacities like Wuhan, but also in smaller cities like Anlu where the smart solutions could help all road 

users, especially bus passengers, cyclists, and pedestrians to achieve an outcome similar to 

Barcelona’s.  Indeed, the implementation of the WITDP in Wuhan and Anlu will allow testing of the 

conclusions reached in this research effort and hopefully achieve better mobility and the resulting energy 

savings.  

 

 

  

                                            
18 The Triple E approach—Engineering, Education, and Enforcement—encompasses the essential approach for sound traffic 

management because the urban transport system is complex and needs sound engineering to solve many problems. In addition, 

users need to be permanently educated about traffic regulations and good behavior. Finally, authorities need to enforce regulations. 

The Triple E approach therefore offers a comprehensive approach to adequately manage the urban transport system. 
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